This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous bounded function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnbdibl.a | |- ( ph -> A e. dom vol ) |
|
| cnbdibl.va | |- ( ph -> ( vol ` A ) e. RR ) |
||
| cnbdibl.f | |- ( ph -> F e. ( A -cn-> CC ) ) |
||
| cnbdibl.bd | |- ( ph -> E. x e. RR A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) |
||
| Assertion | cnbdibl | |- ( ph -> F e. L^1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnbdibl.a | |- ( ph -> A e. dom vol ) |
|
| 2 | cnbdibl.va | |- ( ph -> ( vol ` A ) e. RR ) |
|
| 3 | cnbdibl.f | |- ( ph -> F e. ( A -cn-> CC ) ) |
|
| 4 | cnbdibl.bd | |- ( ph -> E. x e. RR A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) |
|
| 5 | cnmbf | |- ( ( A e. dom vol /\ F e. ( A -cn-> CC ) ) -> F e. MblFn ) |
|
| 6 | 1 3 5 | syl2anc | |- ( ph -> F e. MblFn ) |
| 7 | cncff | |- ( F e. ( A -cn-> CC ) -> F : A --> CC ) |
|
| 8 | fdm | |- ( F : A --> CC -> dom F = A ) |
|
| 9 | 3 7 8 | 3syl | |- ( ph -> dom F = A ) |
| 10 | 9 | fveq2d | |- ( ph -> ( vol ` dom F ) = ( vol ` A ) ) |
| 11 | 10 2 | eqeltrd | |- ( ph -> ( vol ` dom F ) e. RR ) |
| 12 | bddibl | |- ( ( F e. MblFn /\ ( vol ` dom F ) e. RR /\ E. x e. RR A. y e. dom F ( abs ` ( F ` y ) ) <_ x ) -> F e. L^1 ) |
|
| 13 | 6 11 4 12 | syl3anc | |- ( ph -> F e. L^1 ) |