This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A continuous bounded function is integrable. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnbdibl.a | ⊢ ( 𝜑 → 𝐴 ∈ dom vol ) | |
| cnbdibl.va | ⊢ ( 𝜑 → ( vol ‘ 𝐴 ) ∈ ℝ ) | ||
| cnbdibl.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) | ||
| cnbdibl.bd | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) | ||
| Assertion | cnbdibl | ⊢ ( 𝜑 → 𝐹 ∈ 𝐿1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnbdibl.a | ⊢ ( 𝜑 → 𝐴 ∈ dom vol ) | |
| 2 | cnbdibl.va | ⊢ ( 𝜑 → ( vol ‘ 𝐴 ) ∈ ℝ ) | |
| 3 | cnbdibl.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) | |
| 4 | cnbdibl.bd | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) | |
| 5 | cnmbf | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) → 𝐹 ∈ MblFn ) | |
| 6 | 1 3 5 | syl2anc | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
| 7 | cncff | ⊢ ( 𝐹 ∈ ( 𝐴 –cn→ ℂ ) → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 8 | fdm | ⊢ ( 𝐹 : 𝐴 ⟶ ℂ → dom 𝐹 = 𝐴 ) | |
| 9 | 3 7 8 | 3syl | ⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
| 10 | 9 | fveq2d | ⊢ ( 𝜑 → ( vol ‘ dom 𝐹 ) = ( vol ‘ 𝐴 ) ) |
| 11 | 10 2 | eqeltrd | ⊢ ( 𝜑 → ( vol ‘ dom 𝐹 ) ∈ ℝ ) |
| 12 | bddibl | ⊢ ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) → 𝐹 ∈ 𝐿1 ) | |
| 13 | 6 11 4 12 | syl3anc | ⊢ ( 𝜑 → 𝐹 ∈ 𝐿1 ) |