This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: ((a+b)-c)+d = ((a+d)+b)-c holds for complex numbers a,b,c,d. (Contributed by Alexander van der Vekens, 23-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnapbmcpd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A + B ) - C ) + D ) = ( ( ( A + D ) + B ) - C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcl | |- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
|
| 2 | 1 | adantr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( A + B ) e. CC ) |
| 3 | simpr | |- ( ( C e. CC /\ D e. CC ) -> D e. CC ) |
|
| 4 | 3 | adantl | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> D e. CC ) |
| 5 | simpl | |- ( ( C e. CC /\ D e. CC ) -> C e. CC ) |
|
| 6 | 5 | adantl | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> C e. CC ) |
| 7 | 2 4 6 | addsubd | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A + B ) + D ) - C ) = ( ( ( A + B ) - C ) + D ) ) |
| 8 | simpl | |- ( ( A e. CC /\ B e. CC ) -> A e. CC ) |
|
| 9 | 8 | adantr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> A e. CC ) |
| 10 | simpr | |- ( ( A e. CC /\ B e. CC ) -> B e. CC ) |
|
| 11 | 10 | adantr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> B e. CC ) |
| 12 | 9 11 4 | add32d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) + D ) = ( ( A + D ) + B ) ) |
| 13 | 12 | oveq1d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A + B ) + D ) - C ) = ( ( ( A + D ) + B ) - C ) ) |
| 14 | 7 13 | eqtr3d | |- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( ( A + B ) - C ) + D ) = ( ( ( A + D ) + B ) - C ) ) |