This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: ((a+b)-c)+d = ((a+d)+b)-c holds for complex numbers a,b,c,d. (Contributed by Alexander van der Vekens, 23-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnapbmcpd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐴 + 𝐵 ) − 𝐶 ) + 𝐷 ) = ( ( ( 𝐴 + 𝐷 ) + 𝐵 ) − 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) | |
| 2 | 1 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) |
| 3 | simpr | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → 𝐷 ∈ ℂ ) | |
| 4 | 3 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → 𝐷 ∈ ℂ ) |
| 5 | simpl | ⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) → 𝐶 ∈ ℂ ) | |
| 6 | 5 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → 𝐶 ∈ ℂ ) |
| 7 | 2 4 6 | addsubd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐴 + 𝐵 ) + 𝐷 ) − 𝐶 ) = ( ( ( 𝐴 + 𝐵 ) − 𝐶 ) + 𝐷 ) ) |
| 8 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 9 | 8 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → 𝐴 ∈ ℂ ) |
| 10 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → 𝐵 ∈ ℂ ) | |
| 11 | 10 | adantr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → 𝐵 ∈ ℂ ) |
| 12 | 9 11 4 | add32d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( 𝐴 + 𝐵 ) + 𝐷 ) = ( ( 𝐴 + 𝐷 ) + 𝐵 ) ) |
| 13 | 12 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐴 + 𝐵 ) + 𝐷 ) − 𝐶 ) = ( ( ( 𝐴 + 𝐷 ) + 𝐵 ) − 𝐶 ) ) |
| 14 | 7 13 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ) ) → ( ( ( 𝐴 + 𝐵 ) − 𝐶 ) + 𝐷 ) = ( ( ( 𝐴 + 𝐷 ) + 𝐵 ) − 𝐶 ) ) |