This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed walk of length 1 is a loop. (Contributed by AV, 22-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clwlkl1loop | |- ( ( Fun ( iEdg ` G ) /\ F ( ClWalks ` G ) P /\ ( # ` F ) = 1 ) -> ( ( P ` 0 ) = ( P ` 1 ) /\ { ( P ` 0 ) } e. ( Edg ` G ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isclwlk | |- ( F ( ClWalks ` G ) P <-> ( F ( Walks ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
|
| 2 | fveq2 | |- ( ( # ` F ) = 1 -> ( P ` ( # ` F ) ) = ( P ` 1 ) ) |
|
| 3 | 2 | eqeq2d | |- ( ( # ` F ) = 1 -> ( ( P ` 0 ) = ( P ` ( # ` F ) ) <-> ( P ` 0 ) = ( P ` 1 ) ) ) |
| 4 | 3 | anbi2d | |- ( ( # ` F ) = 1 -> ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) <-> ( F ( Walks ` G ) P /\ ( P ` 0 ) = ( P ` 1 ) ) ) ) |
| 5 | simp2r | |- ( ( ( # ` F ) = 1 /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = ( P ` 1 ) ) /\ Fun ( iEdg ` G ) ) -> ( P ` 0 ) = ( P ` 1 ) ) |
|
| 6 | simp3 | |- ( ( ( # ` F ) = 1 /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = ( P ` 1 ) ) /\ Fun ( iEdg ` G ) ) -> Fun ( iEdg ` G ) ) |
|
| 7 | simp2l | |- ( ( ( # ` F ) = 1 /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = ( P ` 1 ) ) /\ Fun ( iEdg ` G ) ) -> F ( Walks ` G ) P ) |
|
| 8 | simpr | |- ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = ( P ` 1 ) ) -> ( P ` 0 ) = ( P ` 1 ) ) |
|
| 9 | 8 | anim2i | |- ( ( ( # ` F ) = 1 /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = ( P ` 1 ) ) ) -> ( ( # ` F ) = 1 /\ ( P ` 0 ) = ( P ` 1 ) ) ) |
| 10 | 9 | 3adant3 | |- ( ( ( # ` F ) = 1 /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = ( P ` 1 ) ) /\ Fun ( iEdg ` G ) ) -> ( ( # ` F ) = 1 /\ ( P ` 0 ) = ( P ` 1 ) ) ) |
| 11 | wlkl1loop | |- ( ( ( Fun ( iEdg ` G ) /\ F ( Walks ` G ) P ) /\ ( ( # ` F ) = 1 /\ ( P ` 0 ) = ( P ` 1 ) ) ) -> { ( P ` 0 ) } e. ( Edg ` G ) ) |
|
| 12 | 6 7 10 11 | syl21anc | |- ( ( ( # ` F ) = 1 /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = ( P ` 1 ) ) /\ Fun ( iEdg ` G ) ) -> { ( P ` 0 ) } e. ( Edg ` G ) ) |
| 13 | 5 12 | jca | |- ( ( ( # ` F ) = 1 /\ ( F ( Walks ` G ) P /\ ( P ` 0 ) = ( P ` 1 ) ) /\ Fun ( iEdg ` G ) ) -> ( ( P ` 0 ) = ( P ` 1 ) /\ { ( P ` 0 ) } e. ( Edg ` G ) ) ) |
| 14 | 13 | 3exp | |- ( ( # ` F ) = 1 -> ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = ( P ` 1 ) ) -> ( Fun ( iEdg ` G ) -> ( ( P ` 0 ) = ( P ` 1 ) /\ { ( P ` 0 ) } e. ( Edg ` G ) ) ) ) ) |
| 15 | 4 14 | sylbid | |- ( ( # ` F ) = 1 -> ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( Fun ( iEdg ` G ) -> ( ( P ` 0 ) = ( P ` 1 ) /\ { ( P ` 0 ) } e. ( Edg ` G ) ) ) ) ) |
| 16 | 15 | com13 | |- ( Fun ( iEdg ` G ) -> ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) -> ( ( # ` F ) = 1 -> ( ( P ` 0 ) = ( P ` 1 ) /\ { ( P ` 0 ) } e. ( Edg ` G ) ) ) ) ) |
| 17 | 1 16 | biimtrid | |- ( Fun ( iEdg ` G ) -> ( F ( ClWalks ` G ) P -> ( ( # ` F ) = 1 -> ( ( P ` 0 ) = ( P ` 1 ) /\ { ( P ` 0 ) } e. ( Edg ` G ) ) ) ) ) |
| 18 | 17 | 3imp | |- ( ( Fun ( iEdg ` G ) /\ F ( ClWalks ` G ) P /\ ( # ` F ) = 1 ) -> ( ( P ` 0 ) = ( P ` 1 ) /\ { ( P ` 0 ) } e. ( Edg ` G ) ) ) |