This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implications for the properties of the components of a closed walk. (Contributed by Alexander van der Vekens, 24-Jun-2018) (Revised by AV, 17-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isclwlke.v | |- V = ( Vtx ` G ) |
|
| isclwlke.i | |- I = ( iEdg ` G ) |
||
| clwlkcomp.1 | |- F = ( 1st ` W ) |
||
| clwlkcomp.2 | |- P = ( 2nd ` W ) |
||
| Assertion | clwlkcompim | |- ( W e. ( ClWalks ` G ) -> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isclwlke.v | |- V = ( Vtx ` G ) |
|
| 2 | isclwlke.i | |- I = ( iEdg ` G ) |
|
| 3 | clwlkcomp.1 | |- F = ( 1st ` W ) |
|
| 4 | clwlkcomp.2 | |- P = ( 2nd ` W ) |
|
| 5 | elfvex | |- ( W e. ( ClWalks ` G ) -> G e. _V ) |
|
| 6 | clwlks | |- ( ClWalks ` G ) = { <. f , g >. | ( f ( Walks ` G ) g /\ ( g ` 0 ) = ( g ` ( # ` f ) ) ) } |
|
| 7 | 6 | a1i | |- ( G e. _V -> ( ClWalks ` G ) = { <. f , g >. | ( f ( Walks ` G ) g /\ ( g ` 0 ) = ( g ` ( # ` f ) ) ) } ) |
| 8 | 7 | eleq2d | |- ( G e. _V -> ( W e. ( ClWalks ` G ) <-> W e. { <. f , g >. | ( f ( Walks ` G ) g /\ ( g ` 0 ) = ( g ` ( # ` f ) ) ) } ) ) |
| 9 | elopaelxp | |- ( W e. { <. f , g >. | ( f ( Walks ` G ) g /\ ( g ` 0 ) = ( g ` ( # ` f ) ) ) } -> W e. ( _V X. _V ) ) |
|
| 10 | 9 | anim2i | |- ( ( G e. _V /\ W e. { <. f , g >. | ( f ( Walks ` G ) g /\ ( g ` 0 ) = ( g ` ( # ` f ) ) ) } ) -> ( G e. _V /\ W e. ( _V X. _V ) ) ) |
| 11 | 10 | ex | |- ( G e. _V -> ( W e. { <. f , g >. | ( f ( Walks ` G ) g /\ ( g ` 0 ) = ( g ` ( # ` f ) ) ) } -> ( G e. _V /\ W e. ( _V X. _V ) ) ) ) |
| 12 | 8 11 | sylbid | |- ( G e. _V -> ( W e. ( ClWalks ` G ) -> ( G e. _V /\ W e. ( _V X. _V ) ) ) ) |
| 13 | 5 12 | mpcom | |- ( W e. ( ClWalks ` G ) -> ( G e. _V /\ W e. ( _V X. _V ) ) ) |
| 14 | 1 2 3 4 | clwlkcomp | |- ( ( G e. _V /\ W e. ( _V X. _V ) ) -> ( W e. ( ClWalks ` G ) <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) ) |
| 15 | 13 14 | syl | |- ( W e. ( ClWalks ` G ) -> ( W e. ( ClWalks ` G ) <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) ) |
| 16 | 15 | ibi | |- ( W e. ( ClWalks ` G ) -> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) |