This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implications for the properties of the components of a closed walk in a pseudograph. (Contributed by Alexander van der Vekens, 24-Jun-2018) (Revised by AV, 2-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isclwlke.v | |- V = ( Vtx ` G ) |
|
| isclwlke.i | |- I = ( iEdg ` G ) |
||
| clwlkcomp.1 | |- F = ( 1st ` W ) |
||
| clwlkcomp.2 | |- P = ( 2nd ` W ) |
||
| Assertion | upgrclwlkcompim | |- ( ( G e. UPGraph /\ W e. ( ClWalks ` G ) ) -> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isclwlke.v | |- V = ( Vtx ` G ) |
|
| 2 | isclwlke.i | |- I = ( iEdg ` G ) |
|
| 3 | clwlkcomp.1 | |- F = ( 1st ` W ) |
|
| 4 | clwlkcomp.2 | |- P = ( 2nd ` W ) |
|
| 5 | 1 2 3 4 | clwlkcompim | |- ( W e. ( ClWalks ` G ) -> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) |
| 6 | 5 | adantl | |- ( ( G e. UPGraph /\ W e. ( ClWalks ` G ) ) -> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) |
| 7 | simprl | |- ( ( ( G e. UPGraph /\ W e. ( ClWalks ` G ) ) /\ ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) -> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) ) |
|
| 8 | clwlkwlk | |- ( W e. ( ClWalks ` G ) -> W e. ( Walks ` G ) ) |
|
| 9 | 1 2 3 4 | upgrwlkcompim | |- ( ( G e. UPGraph /\ W e. ( Walks ` G ) ) -> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) ) |
| 10 | 9 | simp3d | |- ( ( G e. UPGraph /\ W e. ( Walks ` G ) ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) |
| 11 | 8 10 | sylan2 | |- ( ( G e. UPGraph /\ W e. ( ClWalks ` G ) ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) |
| 12 | 11 | adantr | |- ( ( ( G e. UPGraph /\ W e. ( ClWalks ` G ) ) /\ ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } ) |
| 13 | simprrr | |- ( ( ( G e. UPGraph /\ W e. ( ClWalks ` G ) ) /\ ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) -> ( P ` 0 ) = ( P ` ( # ` F ) ) ) |
|
| 14 | 7 12 13 | 3jca | |- ( ( ( G e. UPGraph /\ W e. ( ClWalks ` G ) ) /\ ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) -> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
| 15 | 6 14 | mpdan | |- ( ( G e. UPGraph /\ W e. ( ClWalks ` G ) ) -> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ A. k e. ( 0 ..^ ( # ` F ) ) ( I ` ( F ` k ) ) = { ( P ` k ) , ( P ` ( k + 1 ) ) } /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |