This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed walk expressed by properties of its components. (Contributed by Alexander van der Vekens, 24-Jun-2018) (Revised by AV, 17-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isclwlke.v | |- V = ( Vtx ` G ) |
|
| isclwlke.i | |- I = ( iEdg ` G ) |
||
| clwlkcomp.1 | |- F = ( 1st ` W ) |
||
| clwlkcomp.2 | |- P = ( 2nd ` W ) |
||
| Assertion | clwlkcomp | |- ( ( G e. X /\ W e. ( S X. T ) ) -> ( W e. ( ClWalks ` G ) <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isclwlke.v | |- V = ( Vtx ` G ) |
|
| 2 | isclwlke.i | |- I = ( iEdg ` G ) |
|
| 3 | clwlkcomp.1 | |- F = ( 1st ` W ) |
|
| 4 | clwlkcomp.2 | |- P = ( 2nd ` W ) |
|
| 5 | 3 | eqcomi | |- ( 1st ` W ) = F |
| 6 | 4 | eqcomi | |- ( 2nd ` W ) = P |
| 7 | 5 6 | pm3.2i | |- ( ( 1st ` W ) = F /\ ( 2nd ` W ) = P ) |
| 8 | eqop | |- ( W e. ( S X. T ) -> ( W = <. F , P >. <-> ( ( 1st ` W ) = F /\ ( 2nd ` W ) = P ) ) ) |
|
| 9 | 7 8 | mpbiri | |- ( W e. ( S X. T ) -> W = <. F , P >. ) |
| 10 | 9 | eleq1d | |- ( W e. ( S X. T ) -> ( W e. ( ClWalks ` G ) <-> <. F , P >. e. ( ClWalks ` G ) ) ) |
| 11 | df-br | |- ( F ( ClWalks ` G ) P <-> <. F , P >. e. ( ClWalks ` G ) ) |
|
| 12 | 10 11 | bitr4di | |- ( W e. ( S X. T ) -> ( W e. ( ClWalks ` G ) <-> F ( ClWalks ` G ) P ) ) |
| 13 | 1 2 | isclwlke | |- ( G e. X -> ( F ( ClWalks ` G ) P <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) ) |
| 14 | 12 13 | sylan9bbr | |- ( ( G e. X /\ W e. ( S X. T ) ) -> ( W e. ( ClWalks ` G ) <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) ) |