This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of a pair of functions to be a closed walk (in an undirected graph). (Contributed by Alexander van der Vekens, 24-Jun-2018) (Revised by AV, 16-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isclwlke.v | |- V = ( Vtx ` G ) |
|
| isclwlke.i | |- I = ( iEdg ` G ) |
||
| Assertion | isclwlke | |- ( G e. X -> ( F ( ClWalks ` G ) P <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isclwlke.v | |- V = ( Vtx ` G ) |
|
| 2 | isclwlke.i | |- I = ( iEdg ` G ) |
|
| 3 | isclwlk | |- ( F ( ClWalks ` G ) P <-> ( F ( Walks ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) |
|
| 4 | 1 2 | iswlkg | |- ( G e. X -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) |
| 5 | df-3an | |- ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) |
|
| 6 | 4 5 | bitrdi | |- ( G e. X -> ( F ( Walks ` G ) P <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) |
| 7 | 6 | anbi1d | |- ( G e. X -> ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) <-> ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) |
| 8 | anass | |- ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) |
|
| 9 | 7 8 | bitrdi | |- ( G e. X -> ( ( F ( Walks ` G ) P /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) ) |
| 10 | 3 9 | bitrid | |- ( G e. X -> ( F ( ClWalks ` G ) P <-> ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V ) /\ ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) /\ ( P ` 0 ) = ( P ` ( # ` F ) ) ) ) ) ) |