This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed walk expressed by properties of its components. (Contributed by Alexander van der Vekens, 24-Jun-2018) (Revised by AV, 17-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isclwlke.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| isclwlke.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| clwlkcomp.1 | ⊢ 𝐹 = ( 1st ‘ 𝑊 ) | ||
| clwlkcomp.2 | ⊢ 𝑃 = ( 2nd ‘ 𝑊 ) | ||
| Assertion | clwlkcomp | ⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝑊 ∈ ( 𝑆 × 𝑇 ) ) → ( 𝑊 ∈ ( ClWalks ‘ 𝐺 ) ↔ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isclwlke.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | isclwlke.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | clwlkcomp.1 | ⊢ 𝐹 = ( 1st ‘ 𝑊 ) | |
| 4 | clwlkcomp.2 | ⊢ 𝑃 = ( 2nd ‘ 𝑊 ) | |
| 5 | 3 | eqcomi | ⊢ ( 1st ‘ 𝑊 ) = 𝐹 |
| 6 | 4 | eqcomi | ⊢ ( 2nd ‘ 𝑊 ) = 𝑃 |
| 7 | 5 6 | pm3.2i | ⊢ ( ( 1st ‘ 𝑊 ) = 𝐹 ∧ ( 2nd ‘ 𝑊 ) = 𝑃 ) |
| 8 | eqop | ⊢ ( 𝑊 ∈ ( 𝑆 × 𝑇 ) → ( 𝑊 = 〈 𝐹 , 𝑃 〉 ↔ ( ( 1st ‘ 𝑊 ) = 𝐹 ∧ ( 2nd ‘ 𝑊 ) = 𝑃 ) ) ) | |
| 9 | 7 8 | mpbiri | ⊢ ( 𝑊 ∈ ( 𝑆 × 𝑇 ) → 𝑊 = 〈 𝐹 , 𝑃 〉 ) |
| 10 | 9 | eleq1d | ⊢ ( 𝑊 ∈ ( 𝑆 × 𝑇 ) → ( 𝑊 ∈ ( ClWalks ‘ 𝐺 ) ↔ 〈 𝐹 , 𝑃 〉 ∈ ( ClWalks ‘ 𝐺 ) ) ) |
| 11 | df-br | ⊢ ( 𝐹 ( ClWalks ‘ 𝐺 ) 𝑃 ↔ 〈 𝐹 , 𝑃 〉 ∈ ( ClWalks ‘ 𝐺 ) ) | |
| 12 | 10 11 | bitr4di | ⊢ ( 𝑊 ∈ ( 𝑆 × 𝑇 ) → ( 𝑊 ∈ ( ClWalks ‘ 𝐺 ) ↔ 𝐹 ( ClWalks ‘ 𝐺 ) 𝑃 ) ) |
| 13 | 1 2 | isclwlke | ⊢ ( 𝐺 ∈ 𝑋 → ( 𝐹 ( ClWalks ‘ 𝐺 ) 𝑃 ↔ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
| 14 | 12 13 | sylan9bbr | ⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝑊 ∈ ( 𝑆 × 𝑇 ) ) → ( 𝑊 ∈ ( ClWalks ‘ 𝐺 ) ↔ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) ) ) |