This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of climrec using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climrecf.1 | |- F/ k ph |
|
| climrecf.2 | |- F/_ k G |
||
| climrecf.3 | |- F/_ k H |
||
| climrecf.4 | |- Z = ( ZZ>= ` M ) |
||
| climrecf.5 | |- ( ph -> M e. ZZ ) |
||
| climrecf.6 | |- ( ph -> G ~~> A ) |
||
| climrecf.7 | |- ( ph -> A =/= 0 ) |
||
| climrecf.8 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. ( CC \ { 0 } ) ) |
||
| climrecf.9 | |- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( 1 / ( G ` k ) ) ) |
||
| climrecf.10 | |- ( ph -> H e. W ) |
||
| Assertion | climrecf | |- ( ph -> H ~~> ( 1 / A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climrecf.1 | |- F/ k ph |
|
| 2 | climrecf.2 | |- F/_ k G |
|
| 3 | climrecf.3 | |- F/_ k H |
|
| 4 | climrecf.4 | |- Z = ( ZZ>= ` M ) |
|
| 5 | climrecf.5 | |- ( ph -> M e. ZZ ) |
|
| 6 | climrecf.6 | |- ( ph -> G ~~> A ) |
|
| 7 | climrecf.7 | |- ( ph -> A =/= 0 ) |
|
| 8 | climrecf.8 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. ( CC \ { 0 } ) ) |
|
| 9 | climrecf.9 | |- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( 1 / ( G ` k ) ) ) |
|
| 10 | climrecf.10 | |- ( ph -> H e. W ) |
|
| 11 | nfv | |- F/ k j e. Z |
|
| 12 | 1 11 | nfan | |- F/ k ( ph /\ j e. Z ) |
| 13 | nfcv | |- F/_ k j |
|
| 14 | 2 13 | nffv | |- F/_ k ( G ` j ) |
| 15 | 14 | nfel1 | |- F/ k ( G ` j ) e. ( CC \ { 0 } ) |
| 16 | 12 15 | nfim | |- F/ k ( ( ph /\ j e. Z ) -> ( G ` j ) e. ( CC \ { 0 } ) ) |
| 17 | eleq1w | |- ( k = j -> ( k e. Z <-> j e. Z ) ) |
|
| 18 | 17 | anbi2d | |- ( k = j -> ( ( ph /\ k e. Z ) <-> ( ph /\ j e. Z ) ) ) |
| 19 | fveq2 | |- ( k = j -> ( G ` k ) = ( G ` j ) ) |
|
| 20 | 19 | eleq1d | |- ( k = j -> ( ( G ` k ) e. ( CC \ { 0 } ) <-> ( G ` j ) e. ( CC \ { 0 } ) ) ) |
| 21 | 18 20 | imbi12d | |- ( k = j -> ( ( ( ph /\ k e. Z ) -> ( G ` k ) e. ( CC \ { 0 } ) ) <-> ( ( ph /\ j e. Z ) -> ( G ` j ) e. ( CC \ { 0 } ) ) ) ) |
| 22 | 16 21 8 | chvarfv | |- ( ( ph /\ j e. Z ) -> ( G ` j ) e. ( CC \ { 0 } ) ) |
| 23 | 3 13 | nffv | |- F/_ k ( H ` j ) |
| 24 | nfcv | |- F/_ k 1 |
|
| 25 | nfcv | |- F/_ k / |
|
| 26 | 24 25 14 | nfov | |- F/_ k ( 1 / ( G ` j ) ) |
| 27 | 23 26 | nfeq | |- F/ k ( H ` j ) = ( 1 / ( G ` j ) ) |
| 28 | 12 27 | nfim | |- F/ k ( ( ph /\ j e. Z ) -> ( H ` j ) = ( 1 / ( G ` j ) ) ) |
| 29 | fveq2 | |- ( k = j -> ( H ` k ) = ( H ` j ) ) |
|
| 30 | 19 | oveq2d | |- ( k = j -> ( 1 / ( G ` k ) ) = ( 1 / ( G ` j ) ) ) |
| 31 | 29 30 | eqeq12d | |- ( k = j -> ( ( H ` k ) = ( 1 / ( G ` k ) ) <-> ( H ` j ) = ( 1 / ( G ` j ) ) ) ) |
| 32 | 18 31 | imbi12d | |- ( k = j -> ( ( ( ph /\ k e. Z ) -> ( H ` k ) = ( 1 / ( G ` k ) ) ) <-> ( ( ph /\ j e. Z ) -> ( H ` j ) = ( 1 / ( G ` j ) ) ) ) ) |
| 33 | 28 32 9 | chvarfv | |- ( ( ph /\ j e. Z ) -> ( H ` j ) = ( 1 / ( G ` j ) ) ) |
| 34 | 4 5 6 7 22 33 10 | climrec | |- ( ph -> H ~~> ( 1 / A ) ) |