This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Chebyshev function is always positive. (Contributed by Mario Carneiro, 15-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chtge0 | |- ( A e. RR -> 0 <_ ( theta ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ppifi | |- ( A e. RR -> ( ( 0 [,] A ) i^i Prime ) e. Fin ) |
|
| 2 | simpr | |- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> p e. ( ( 0 [,] A ) i^i Prime ) ) |
|
| 3 | 2 | elin2d | |- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> p e. Prime ) |
| 4 | prmuz2 | |- ( p e. Prime -> p e. ( ZZ>= ` 2 ) ) |
|
| 5 | 3 4 | syl | |- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> p e. ( ZZ>= ` 2 ) ) |
| 6 | eluz2b2 | |- ( p e. ( ZZ>= ` 2 ) <-> ( p e. NN /\ 1 < p ) ) |
|
| 7 | 5 6 | sylib | |- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( p e. NN /\ 1 < p ) ) |
| 8 | 7 | simpld | |- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> p e. NN ) |
| 9 | 8 | nnrpd | |- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> p e. RR+ ) |
| 10 | 9 | relogcld | |- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( log ` p ) e. RR ) |
| 11 | 8 | nnred | |- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> p e. RR ) |
| 12 | 7 | simprd | |- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> 1 < p ) |
| 13 | 11 12 | rplogcld | |- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> ( log ` p ) e. RR+ ) |
| 14 | 13 | rpge0d | |- ( ( A e. RR /\ p e. ( ( 0 [,] A ) i^i Prime ) ) -> 0 <_ ( log ` p ) ) |
| 15 | 1 10 14 | fsumge0 | |- ( A e. RR -> 0 <_ sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` p ) ) |
| 16 | chtval | |- ( A e. RR -> ( theta ` A ) = sum_ p e. ( ( 0 [,] A ) i^i Prime ) ( log ` p ) ) |
|
| 17 | 15 16 | breqtrrd | |- ( A e. RR -> 0 <_ ( theta ` A ) ) |