This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed subspace less than its orthocomplement is zero. (Contributed by NM, 14-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chssoc | |- ( A e. CH -> ( A C_ ( _|_ ` A ) <-> A = 0H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inidm | |- ( A i^i A ) = A |
|
| 2 | sslin | |- ( A C_ ( _|_ ` A ) -> ( A i^i A ) C_ ( A i^i ( _|_ ` A ) ) ) |
|
| 3 | 1 2 | eqsstrrid | |- ( A C_ ( _|_ ` A ) -> A C_ ( A i^i ( _|_ ` A ) ) ) |
| 4 | chocin | |- ( A e. CH -> ( A i^i ( _|_ ` A ) ) = 0H ) |
|
| 5 | 4 | sseq2d | |- ( A e. CH -> ( A C_ ( A i^i ( _|_ ` A ) ) <-> A C_ 0H ) ) |
| 6 | chle0 | |- ( A e. CH -> ( A C_ 0H <-> A = 0H ) ) |
|
| 7 | 5 6 | bitrd | |- ( A e. CH -> ( A C_ ( A i^i ( _|_ ` A ) ) <-> A = 0H ) ) |
| 8 | 3 7 | imbitrid | |- ( A e. CH -> ( A C_ ( _|_ ` A ) -> A = 0H ) ) |
| 9 | simpr | |- ( ( A e. CH /\ A = 0H ) -> A = 0H ) |
|
| 10 | choccl | |- ( A e. CH -> ( _|_ ` A ) e. CH ) |
|
| 11 | ch0le | |- ( ( _|_ ` A ) e. CH -> 0H C_ ( _|_ ` A ) ) |
|
| 12 | 10 11 | syl | |- ( A e. CH -> 0H C_ ( _|_ ` A ) ) |
| 13 | 12 | adantr | |- ( ( A e. CH /\ A = 0H ) -> 0H C_ ( _|_ ` A ) ) |
| 14 | 9 13 | eqsstrd | |- ( ( A e. CH /\ A = 0H ) -> A C_ ( _|_ ` A ) ) |
| 15 | 14 | ex | |- ( A e. CH -> ( A = 0H -> A C_ ( _|_ ` A ) ) ) |
| 16 | 8 15 | impbid | |- ( A e. CH -> ( A C_ ( _|_ ` A ) <-> A = 0H ) ) |