This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonzero closed subspace has a nonzero vector. (Contributed by NM, 25-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chne0 | ⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ≠ 0ℋ ↔ ∃ 𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neeq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( 𝐴 ≠ 0ℋ ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ≠ 0ℋ ) ) | |
| 2 | rexeq | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( ∃ 𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ ↔ ∃ 𝑥 ∈ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) 𝑥 ≠ 0ℎ ) ) | |
| 3 | 1 2 | bibi12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( ( 𝐴 ≠ 0ℋ ↔ ∃ 𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ ) ↔ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ≠ 0ℋ ↔ ∃ 𝑥 ∈ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) 𝑥 ≠ 0ℎ ) ) ) |
| 4 | h0elch | ⊢ 0ℋ ∈ Cℋ | |
| 5 | 4 | elimel | ⊢ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∈ Cℋ |
| 6 | 5 | chne0i | ⊢ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ≠ 0ℋ ↔ ∃ 𝑥 ∈ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) 𝑥 ≠ 0ℎ ) |
| 7 | 3 6 | dedth | ⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ≠ 0ℋ ↔ ∃ 𝑥 ∈ 𝐴 𝑥 ≠ 0ℎ ) ) |