This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert lattice ordering in terms of join. (Contributed by NM, 15-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ch0le.1 | |- A e. CH |
|
| chjcl.2 | |- B e. CH |
||
| Assertion | chlejb1i | |- ( A C_ B <-> ( A vH B ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ch0le.1 | |- A e. CH |
|
| 2 | chjcl.2 | |- B e. CH |
|
| 3 | ssid | |- B C_ B |
|
| 4 | 1 2 2 | chlubii | |- ( ( A C_ B /\ B C_ B ) -> ( A vH B ) C_ B ) |
| 5 | 3 4 | mpan2 | |- ( A C_ B -> ( A vH B ) C_ B ) |
| 6 | 2 1 | chub2i | |- B C_ ( A vH B ) |
| 7 | 5 6 | jctir | |- ( A C_ B -> ( ( A vH B ) C_ B /\ B C_ ( A vH B ) ) ) |
| 8 | eqss | |- ( ( A vH B ) = B <-> ( ( A vH B ) C_ B /\ B C_ ( A vH B ) ) ) |
|
| 9 | 7 8 | sylibr | |- ( A C_ B -> ( A vH B ) = B ) |
| 10 | 1 2 | chub1i | |- A C_ ( A vH B ) |
| 11 | eqimss | |- ( ( A vH B ) = B -> ( A vH B ) C_ B ) |
|
| 12 | 10 11 | sstrid | |- ( ( A vH B ) = B -> A C_ B ) |
| 13 | 9 12 | impbii | |- ( A C_ B <-> ( A vH B ) = B ) |