This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two Hilbert lattice elements are zero iff their join is zero. (Contributed by NM, 7-Aug-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ch0le.1 | |- A e. CH |
|
| chjcl.2 | |- B e. CH |
||
| Assertion | chj00i | |- ( ( A = 0H /\ B = 0H ) <-> ( A vH B ) = 0H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ch0le.1 | |- A e. CH |
|
| 2 | chjcl.2 | |- B e. CH |
|
| 3 | oveq12 | |- ( ( A = 0H /\ B = 0H ) -> ( A vH B ) = ( 0H vH 0H ) ) |
|
| 4 | h0elch | |- 0H e. CH |
|
| 5 | 4 | chj0i | |- ( 0H vH 0H ) = 0H |
| 6 | 3 5 | eqtrdi | |- ( ( A = 0H /\ B = 0H ) -> ( A vH B ) = 0H ) |
| 7 | 1 2 | chub1i | |- A C_ ( A vH B ) |
| 8 | sseq2 | |- ( ( A vH B ) = 0H -> ( A C_ ( A vH B ) <-> A C_ 0H ) ) |
|
| 9 | 7 8 | mpbii | |- ( ( A vH B ) = 0H -> A C_ 0H ) |
| 10 | 1 | chle0i | |- ( A C_ 0H <-> A = 0H ) |
| 11 | 9 10 | sylib | |- ( ( A vH B ) = 0H -> A = 0H ) |
| 12 | 2 1 | chub2i | |- B C_ ( A vH B ) |
| 13 | sseq2 | |- ( ( A vH B ) = 0H -> ( B C_ ( A vH B ) <-> B C_ 0H ) ) |
|
| 14 | 12 13 | mpbii | |- ( ( A vH B ) = 0H -> B C_ 0H ) |
| 15 | 2 | chle0i | |- ( B C_ 0H <-> B = 0H ) |
| 16 | 14 15 | sylib | |- ( ( A vH B ) = 0H -> B = 0H ) |
| 17 | 11 16 | jca | |- ( ( A vH B ) = 0H -> ( A = 0H /\ B = 0H ) ) |
| 18 | 6 17 | impbii | |- ( ( A = 0H /\ B = 0H ) <-> ( A vH B ) = 0H ) |