This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert lattice absorption law. From definition of lattice in Kalmbach p. 14. (Contributed by NM, 16-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chabs2 | |- ( ( A e. CH /\ B e. CH ) -> ( A i^i ( A vH B ) ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chub1 | |- ( ( A e. CH /\ B e. CH ) -> A C_ ( A vH B ) ) |
|
| 2 | ssid | |- A C_ A |
|
| 3 | 1 2 | jctil | |- ( ( A e. CH /\ B e. CH ) -> ( A C_ A /\ A C_ ( A vH B ) ) ) |
| 4 | ssin | |- ( ( A C_ A /\ A C_ ( A vH B ) ) <-> A C_ ( A i^i ( A vH B ) ) ) |
|
| 5 | 3 4 | sylib | |- ( ( A e. CH /\ B e. CH ) -> A C_ ( A i^i ( A vH B ) ) ) |
| 6 | inss1 | |- ( A i^i ( A vH B ) ) C_ A |
|
| 7 | 5 6 | jctil | |- ( ( A e. CH /\ B e. CH ) -> ( ( A i^i ( A vH B ) ) C_ A /\ A C_ ( A i^i ( A vH B ) ) ) ) |
| 8 | eqss | |- ( ( A i^i ( A vH B ) ) = A <-> ( ( A i^i ( A vH B ) ) C_ A /\ A C_ ( A i^i ( A vH B ) ) ) ) |
|
| 9 | 7 8 | sylibr | |- ( ( A e. CH /\ B e. CH ) -> ( A i^i ( A vH B ) ) = A ) |