This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of membership when the member is a set. (Contributed by NM, 18-Aug-1993) Strengthen from sethood hypothesis to sethood antecedent. (Revised by BJ, 12-Feb-2022) Avoid ax-12 . (Revised by BJ, 1-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clel2g | |- ( A e. V -> ( A e. B <-> A. x ( x = A -> x e. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset | |- ( A e. V -> E. x x = A ) |
|
| 2 | biimt | |- ( E. x x = A -> ( A e. B <-> ( E. x x = A -> A e. B ) ) ) |
|
| 3 | 1 2 | syl | |- ( A e. V -> ( A e. B <-> ( E. x x = A -> A e. B ) ) ) |
| 4 | 19.23v | |- ( A. x ( x = A -> A e. B ) <-> ( E. x x = A -> A e. B ) ) |
|
| 5 | eleq1 | |- ( x = A -> ( x e. B <-> A e. B ) ) |
|
| 6 | 5 | bicomd | |- ( x = A -> ( A e. B <-> x e. B ) ) |
| 7 | 6 | pm5.74i | |- ( ( x = A -> A e. B ) <-> ( x = A -> x e. B ) ) |
| 8 | 7 | albii | |- ( A. x ( x = A -> A e. B ) <-> A. x ( x = A -> x e. B ) ) |
| 9 | 4 8 | bitr3i | |- ( ( E. x x = A -> A e. B ) <-> A. x ( x = A -> x e. B ) ) |
| 10 | 3 9 | bitrdi | |- ( A e. V -> ( A e. B <-> A. x ( x = A -> x e. B ) ) ) |