This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A concatenation of a word with a singleton word is a word over an alphabet S iff the symbols of both words belong to the alphabet S . (Contributed by AV, 27-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccats1alpha | |- ( ( A e. Word V /\ X e. U ) -> ( ( A ++ <" X "> ) e. Word S <-> ( A e. Word S /\ X e. S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdv | |- ( A e. Word V -> A e. Word _V ) |
|
| 2 | s1cli | |- <" X "> e. Word _V |
|
| 3 | 2 | a1i | |- ( X e. U -> <" X "> e. Word _V ) |
| 4 | ccatalpha | |- ( ( A e. Word _V /\ <" X "> e. Word _V ) -> ( ( A ++ <" X "> ) e. Word S <-> ( A e. Word S /\ <" X "> e. Word S ) ) ) |
|
| 5 | 1 3 4 | syl2an | |- ( ( A e. Word V /\ X e. U ) -> ( ( A ++ <" X "> ) e. Word S <-> ( A e. Word S /\ <" X "> e. Word S ) ) ) |
| 6 | simpr | |- ( ( X e. U /\ <" X "> e. Word S ) -> <" X "> e. Word S ) |
|
| 7 | s1len | |- ( # ` <" X "> ) = 1 |
|
| 8 | wrdl1exs1 | |- ( ( <" X "> e. Word S /\ ( # ` <" X "> ) = 1 ) -> E. w e. S <" X "> = <" w "> ) |
|
| 9 | 6 7 8 | sylancl | |- ( ( X e. U /\ <" X "> e. Word S ) -> E. w e. S <" X "> = <" w "> ) |
| 10 | elex | |- ( X e. U -> X e. _V ) |
|
| 11 | 10 | adantr | |- ( ( X e. U /\ <" X "> e. Word S ) -> X e. _V ) |
| 12 | elex | |- ( w e. S -> w e. _V ) |
|
| 13 | s111 | |- ( ( X e. _V /\ w e. _V ) -> ( <" X "> = <" w "> <-> X = w ) ) |
|
| 14 | 11 12 13 | syl2an | |- ( ( ( X e. U /\ <" X "> e. Word S ) /\ w e. S ) -> ( <" X "> = <" w "> <-> X = w ) ) |
| 15 | simpr | |- ( ( ( X e. U /\ <" X "> e. Word S ) /\ w e. S ) -> w e. S ) |
|
| 16 | eleq1 | |- ( X = w -> ( X e. S <-> w e. S ) ) |
|
| 17 | 15 16 | syl5ibrcom | |- ( ( ( X e. U /\ <" X "> e. Word S ) /\ w e. S ) -> ( X = w -> X e. S ) ) |
| 18 | 14 17 | sylbid | |- ( ( ( X e. U /\ <" X "> e. Word S ) /\ w e. S ) -> ( <" X "> = <" w "> -> X e. S ) ) |
| 19 | 18 | rexlimdva | |- ( ( X e. U /\ <" X "> e. Word S ) -> ( E. w e. S <" X "> = <" w "> -> X e. S ) ) |
| 20 | 9 19 | mpd | |- ( ( X e. U /\ <" X "> e. Word S ) -> X e. S ) |
| 21 | 20 | ex | |- ( X e. U -> ( <" X "> e. Word S -> X e. S ) ) |
| 22 | s1cl | |- ( X e. S -> <" X "> e. Word S ) |
|
| 23 | 21 22 | impbid1 | |- ( X e. U -> ( <" X "> e. Word S <-> X e. S ) ) |
| 24 | 23 | anbi2d | |- ( X e. U -> ( ( A e. Word S /\ <" X "> e. Word S ) <-> ( A e. Word S /\ X e. S ) ) ) |
| 25 | 24 | adantl | |- ( ( A e. Word V /\ X e. U ) -> ( ( A e. Word S /\ <" X "> e. Word S ) <-> ( A e. Word S /\ X e. S ) ) ) |
| 26 | 5 25 | bitrd | |- ( ( A e. Word V /\ X e. U ) -> ( ( A ++ <" X "> ) e. Word S <-> ( A e. Word S /\ X e. S ) ) ) |