This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A concatenation of a word with a singleton word is a word over an alphabet S iff the symbols of both words belong to the alphabet S . (Contributed by AV, 27-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccats1alpha | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑈 ) → ( ( 𝐴 ++ 〈“ 𝑋 ”〉 ) ∈ Word 𝑆 ↔ ( 𝐴 ∈ Word 𝑆 ∧ 𝑋 ∈ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdv | ⊢ ( 𝐴 ∈ Word 𝑉 → 𝐴 ∈ Word V ) | |
| 2 | s1cli | ⊢ 〈“ 𝑋 ”〉 ∈ Word V | |
| 3 | 2 | a1i | ⊢ ( 𝑋 ∈ 𝑈 → 〈“ 𝑋 ”〉 ∈ Word V ) |
| 4 | ccatalpha | ⊢ ( ( 𝐴 ∈ Word V ∧ 〈“ 𝑋 ”〉 ∈ Word V ) → ( ( 𝐴 ++ 〈“ 𝑋 ”〉 ) ∈ Word 𝑆 ↔ ( 𝐴 ∈ Word 𝑆 ∧ 〈“ 𝑋 ”〉 ∈ Word 𝑆 ) ) ) | |
| 5 | 1 3 4 | syl2an | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑈 ) → ( ( 𝐴 ++ 〈“ 𝑋 ”〉 ) ∈ Word 𝑆 ↔ ( 𝐴 ∈ Word 𝑆 ∧ 〈“ 𝑋 ”〉 ∈ Word 𝑆 ) ) ) |
| 6 | simpr | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 〈“ 𝑋 ”〉 ∈ Word 𝑆 ) → 〈“ 𝑋 ”〉 ∈ Word 𝑆 ) | |
| 7 | s1len | ⊢ ( ♯ ‘ 〈“ 𝑋 ”〉 ) = 1 | |
| 8 | wrdl1exs1 | ⊢ ( ( 〈“ 𝑋 ”〉 ∈ Word 𝑆 ∧ ( ♯ ‘ 〈“ 𝑋 ”〉 ) = 1 ) → ∃ 𝑤 ∈ 𝑆 〈“ 𝑋 ”〉 = 〈“ 𝑤 ”〉 ) | |
| 9 | 6 7 8 | sylancl | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 〈“ 𝑋 ”〉 ∈ Word 𝑆 ) → ∃ 𝑤 ∈ 𝑆 〈“ 𝑋 ”〉 = 〈“ 𝑤 ”〉 ) |
| 10 | elex | ⊢ ( 𝑋 ∈ 𝑈 → 𝑋 ∈ V ) | |
| 11 | 10 | adantr | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 〈“ 𝑋 ”〉 ∈ Word 𝑆 ) → 𝑋 ∈ V ) |
| 12 | elex | ⊢ ( 𝑤 ∈ 𝑆 → 𝑤 ∈ V ) | |
| 13 | s111 | ⊢ ( ( 𝑋 ∈ V ∧ 𝑤 ∈ V ) → ( 〈“ 𝑋 ”〉 = 〈“ 𝑤 ”〉 ↔ 𝑋 = 𝑤 ) ) | |
| 14 | 11 12 13 | syl2an | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 〈“ 𝑋 ”〉 ∈ Word 𝑆 ) ∧ 𝑤 ∈ 𝑆 ) → ( 〈“ 𝑋 ”〉 = 〈“ 𝑤 ”〉 ↔ 𝑋 = 𝑤 ) ) |
| 15 | simpr | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 〈“ 𝑋 ”〉 ∈ Word 𝑆 ) ∧ 𝑤 ∈ 𝑆 ) → 𝑤 ∈ 𝑆 ) | |
| 16 | eleq1 | ⊢ ( 𝑋 = 𝑤 → ( 𝑋 ∈ 𝑆 ↔ 𝑤 ∈ 𝑆 ) ) | |
| 17 | 15 16 | syl5ibrcom | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 〈“ 𝑋 ”〉 ∈ Word 𝑆 ) ∧ 𝑤 ∈ 𝑆 ) → ( 𝑋 = 𝑤 → 𝑋 ∈ 𝑆 ) ) |
| 18 | 14 17 | sylbid | ⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 〈“ 𝑋 ”〉 ∈ Word 𝑆 ) ∧ 𝑤 ∈ 𝑆 ) → ( 〈“ 𝑋 ”〉 = 〈“ 𝑤 ”〉 → 𝑋 ∈ 𝑆 ) ) |
| 19 | 18 | rexlimdva | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 〈“ 𝑋 ”〉 ∈ Word 𝑆 ) → ( ∃ 𝑤 ∈ 𝑆 〈“ 𝑋 ”〉 = 〈“ 𝑤 ”〉 → 𝑋 ∈ 𝑆 ) ) |
| 20 | 9 19 | mpd | ⊢ ( ( 𝑋 ∈ 𝑈 ∧ 〈“ 𝑋 ”〉 ∈ Word 𝑆 ) → 𝑋 ∈ 𝑆 ) |
| 21 | 20 | ex | ⊢ ( 𝑋 ∈ 𝑈 → ( 〈“ 𝑋 ”〉 ∈ Word 𝑆 → 𝑋 ∈ 𝑆 ) ) |
| 22 | s1cl | ⊢ ( 𝑋 ∈ 𝑆 → 〈“ 𝑋 ”〉 ∈ Word 𝑆 ) | |
| 23 | 21 22 | impbid1 | ⊢ ( 𝑋 ∈ 𝑈 → ( 〈“ 𝑋 ”〉 ∈ Word 𝑆 ↔ 𝑋 ∈ 𝑆 ) ) |
| 24 | 23 | anbi2d | ⊢ ( 𝑋 ∈ 𝑈 → ( ( 𝐴 ∈ Word 𝑆 ∧ 〈“ 𝑋 ”〉 ∈ Word 𝑆 ) ↔ ( 𝐴 ∈ Word 𝑆 ∧ 𝑋 ∈ 𝑆 ) ) ) |
| 25 | 24 | adantl | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑈 ) → ( ( 𝐴 ∈ Word 𝑆 ∧ 〈“ 𝑋 ”〉 ∈ Word 𝑆 ) ↔ ( 𝐴 ∈ Word 𝑆 ∧ 𝑋 ∈ 𝑆 ) ) ) |
| 26 | 5 25 | bitrd | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝑋 ∈ 𝑈 ) → ( ( 𝐴 ++ 〈“ 𝑋 ”〉 ) ∈ Word 𝑆 ↔ ( 𝐴 ∈ Word 𝑆 ∧ 𝑋 ∈ 𝑆 ) ) ) |