This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule used to change the bound variable in a restricted universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017) Avoid ax-9 , ax-ext . (Revised by Wolf Lammen, 9-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cbvraldva.1 | |- ( ( ph /\ x = y ) -> ( ps <-> ch ) ) |
|
| Assertion | cbvraldva | |- ( ph -> ( A. x e. A ps <-> A. y e. A ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvraldva.1 | |- ( ( ph /\ x = y ) -> ( ps <-> ch ) ) |
|
| 2 | 1 | ancoms | |- ( ( x = y /\ ph ) -> ( ps <-> ch ) ) |
| 3 | 2 | pm5.74da | |- ( x = y -> ( ( ph -> ps ) <-> ( ph -> ch ) ) ) |
| 4 | 3 | cbvralvw | |- ( A. x e. A ( ph -> ps ) <-> A. y e. A ( ph -> ch ) ) |
| 5 | r19.21v | |- ( A. x e. A ( ph -> ps ) <-> ( ph -> A. x e. A ps ) ) |
|
| 6 | r19.21v | |- ( A. y e. A ( ph -> ch ) <-> ( ph -> A. y e. A ch ) ) |
|
| 7 | 4 5 6 | 3bitr3i | |- ( ( ph -> A. x e. A ps ) <-> ( ph -> A. y e. A ch ) ) |
| 8 | 7 | pm5.74ri | |- ( ph -> ( A. x e. A ps <-> A. y e. A ch ) ) |