This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule used to change the third bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 8-Oct-2004) (Revised by David Abernethy, 19-Jun-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cbvoprab3v.1 | |- ( z = w -> ( ph <-> ps ) ) |
|
| Assertion | cbvoprab3v | |- { <. <. x , y >. , z >. | ph } = { <. <. x , y >. , w >. | ps } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvoprab3v.1 | |- ( z = w -> ( ph <-> ps ) ) |
|
| 2 | opeq2 | |- ( z = w -> <. <. x , y >. , z >. = <. <. x , y >. , w >. ) |
|
| 3 | 2 | eqeq2d | |- ( z = w -> ( v = <. <. x , y >. , z >. <-> v = <. <. x , y >. , w >. ) ) |
| 4 | 3 1 | anbi12d | |- ( z = w -> ( ( v = <. <. x , y >. , z >. /\ ph ) <-> ( v = <. <. x , y >. , w >. /\ ps ) ) ) |
| 5 | 4 | cbvexvw | |- ( E. z ( v = <. <. x , y >. , z >. /\ ph ) <-> E. w ( v = <. <. x , y >. , w >. /\ ps ) ) |
| 6 | 5 | 2exbii | |- ( E. x E. y E. z ( v = <. <. x , y >. , z >. /\ ph ) <-> E. x E. y E. w ( v = <. <. x , y >. , w >. /\ ps ) ) |
| 7 | 6 | abbii | |- { v | E. x E. y E. z ( v = <. <. x , y >. , z >. /\ ph ) } = { v | E. x E. y E. w ( v = <. <. x , y >. , w >. /\ ps ) } |
| 8 | df-oprab | |- { <. <. x , y >. , z >. | ph } = { v | E. x E. y E. z ( v = <. <. x , y >. , z >. /\ ph ) } |
|
| 9 | df-oprab | |- { <. <. x , y >. , w >. | ps } = { v | E. x E. y E. w ( v = <. <. x , y >. , w >. /\ ps ) } |
|
| 10 | 7 8 9 | 3eqtr4i | |- { <. <. x , y >. , z >. | ph } = { <. <. x , y >. , w >. | ps } |