This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change the second bound variable in an operation abstraction. (Contributed by Jeff Madsen, 11-Jun-2010) (Revised by Mario Carneiro, 11-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvoprab2.1 | |- F/ w ph |
|
| cbvoprab2.2 | |- F/ y ps |
||
| cbvoprab2.3 | |- ( y = w -> ( ph <-> ps ) ) |
||
| Assertion | cbvoprab2 | |- { <. <. x , y >. , z >. | ph } = { <. <. x , w >. , z >. | ps } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvoprab2.1 | |- F/ w ph |
|
| 2 | cbvoprab2.2 | |- F/ y ps |
|
| 3 | cbvoprab2.3 | |- ( y = w -> ( ph <-> ps ) ) |
|
| 4 | nfv | |- F/ w v = <. <. x , y >. , z >. |
|
| 5 | 4 1 | nfan | |- F/ w ( v = <. <. x , y >. , z >. /\ ph ) |
| 6 | 5 | nfex | |- F/ w E. z ( v = <. <. x , y >. , z >. /\ ph ) |
| 7 | nfv | |- F/ y v = <. <. x , w >. , z >. |
|
| 8 | 7 2 | nfan | |- F/ y ( v = <. <. x , w >. , z >. /\ ps ) |
| 9 | 8 | nfex | |- F/ y E. z ( v = <. <. x , w >. , z >. /\ ps ) |
| 10 | opeq2 | |- ( y = w -> <. x , y >. = <. x , w >. ) |
|
| 11 | 10 | opeq1d | |- ( y = w -> <. <. x , y >. , z >. = <. <. x , w >. , z >. ) |
| 12 | 11 | eqeq2d | |- ( y = w -> ( v = <. <. x , y >. , z >. <-> v = <. <. x , w >. , z >. ) ) |
| 13 | 12 3 | anbi12d | |- ( y = w -> ( ( v = <. <. x , y >. , z >. /\ ph ) <-> ( v = <. <. x , w >. , z >. /\ ps ) ) ) |
| 14 | 13 | exbidv | |- ( y = w -> ( E. z ( v = <. <. x , y >. , z >. /\ ph ) <-> E. z ( v = <. <. x , w >. , z >. /\ ps ) ) ) |
| 15 | 6 9 14 | cbvexv1 | |- ( E. y E. z ( v = <. <. x , y >. , z >. /\ ph ) <-> E. w E. z ( v = <. <. x , w >. , z >. /\ ps ) ) |
| 16 | 15 | exbii | |- ( E. x E. y E. z ( v = <. <. x , y >. , z >. /\ ph ) <-> E. x E. w E. z ( v = <. <. x , w >. , z >. /\ ps ) ) |
| 17 | 16 | abbii | |- { v | E. x E. y E. z ( v = <. <. x , y >. , z >. /\ ph ) } = { v | E. x E. w E. z ( v = <. <. x , w >. , z >. /\ ps ) } |
| 18 | df-oprab | |- { <. <. x , y >. , z >. | ph } = { v | E. x E. y E. z ( v = <. <. x , y >. , z >. /\ ph ) } |
|
| 19 | df-oprab | |- { <. <. x , w >. , z >. | ps } = { v | E. x E. w E. z ( v = <. <. x , w >. , z >. /\ ps ) } |
|
| 20 | 17 18 19 | 3eqtr4i | |- { <. <. x , y >. , z >. | ph } = { <. <. x , w >. , z >. | ps } |