This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. Usage of this theorem is discouraged because it depends on ax-13 . See cbviun for a version with more disjoint variable conditions, but not requiring ax-13 . (Contributed by NM, 26-Mar-2006) (Revised by Andrew Salmon, 25-Jul-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbviung.1 | |- F/_ y B |
|
| cbviung.2 | |- F/_ x C |
||
| cbviung.3 | |- ( x = y -> B = C ) |
||
| Assertion | cbviung | |- U_ x e. A B = U_ y e. A C |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbviung.1 | |- F/_ y B |
|
| 2 | cbviung.2 | |- F/_ x C |
|
| 3 | cbviung.3 | |- ( x = y -> B = C ) |
|
| 4 | 1 | nfcri | |- F/ y z e. B |
| 5 | 2 | nfcri | |- F/ x z e. C |
| 6 | 3 | eleq2d | |- ( x = y -> ( z e. B <-> z e. C ) ) |
| 7 | 4 5 6 | cbvrex | |- ( E. x e. A z e. B <-> E. y e. A z e. C ) |
| 8 | 7 | abbii | |- { z | E. x e. A z e. B } = { z | E. y e. A z e. C } |
| 9 | df-iun | |- U_ x e. A B = { z | E. x e. A z e. B } |
|
| 10 | df-iun | |- U_ y e. A C = { z | E. y e. A z e. C } |
|
| 11 | 8 9 10 | 3eqtr4i | |- U_ x e. A B = U_ y e. A C |