This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. Usage of this theorem is discouraged because it depends on ax-13 . See cbviun for a version with more disjoint variable conditions, but not requiring ax-13 . (Contributed by NM, 26-Mar-2006) (Revised by Andrew Salmon, 25-Jul-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbviung.1 | ⊢ Ⅎ 𝑦 𝐵 | |
| cbviung.2 | ⊢ Ⅎ 𝑥 𝐶 | ||
| cbviung.3 | ⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) | ||
| Assertion | cbviung | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbviung.1 | ⊢ Ⅎ 𝑦 𝐵 | |
| 2 | cbviung.2 | ⊢ Ⅎ 𝑥 𝐶 | |
| 3 | cbviung.3 | ⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) | |
| 4 | 1 | nfcri | ⊢ Ⅎ 𝑦 𝑧 ∈ 𝐵 |
| 5 | 2 | nfcri | ⊢ Ⅎ 𝑥 𝑧 ∈ 𝐶 |
| 6 | 3 | eleq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶 ) ) |
| 7 | 4 5 6 | cbvrex | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝐶 ) |
| 8 | 7 | abbii | ⊢ { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 } = { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝐶 } |
| 9 | df-iun | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = { 𝑧 ∣ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 } | |
| 10 | df-iun | ⊢ ∪ 𝑦 ∈ 𝐴 𝐶 = { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 ∈ 𝐶 } | |
| 11 | 8 9 10 | 3eqtr4i | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |