This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker cbvrexw when possible. (Contributed by NM, 31-Jul-2003) (Proof shortened by Andrew Salmon, 8-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvral.1 | |- F/ y ph |
|
| cbvral.2 | |- F/ x ps |
||
| cbvral.3 | |- ( x = y -> ( ph <-> ps ) ) |
||
| Assertion | cbvrex | |- ( E. x e. A ph <-> E. y e. A ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvral.1 | |- F/ y ph |
|
| 2 | cbvral.2 | |- F/ x ps |
|
| 3 | cbvral.3 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 4 | nfcv | |- F/_ x A |
|
| 5 | nfcv | |- F/_ y A |
|
| 6 | 4 5 1 2 3 | cbvrexf | |- ( E. x e. A ph <-> E. y e. A ps ) |