This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of non-empty hom-sets is non-empty. (Contributed by Zhi Wang, 18-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catcocl.b | |- B = ( Base ` C ) |
|
| catcocl.h | |- H = ( Hom ` C ) |
||
| catcocl.o | |- .x. = ( comp ` C ) |
||
| catcocl.c | |- ( ph -> C e. Cat ) |
||
| catcocl.x | |- ( ph -> X e. B ) |
||
| catcocl.y | |- ( ph -> Y e. B ) |
||
| catcocl.z | |- ( ph -> Z e. B ) |
||
| catcone0.f | |- ( ph -> ( X H Y ) =/= (/) ) |
||
| catcone0.g | |- ( ph -> ( Y H Z ) =/= (/) ) |
||
| Assertion | catcone0 | |- ( ph -> ( X H Z ) =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catcocl.b | |- B = ( Base ` C ) |
|
| 2 | catcocl.h | |- H = ( Hom ` C ) |
|
| 3 | catcocl.o | |- .x. = ( comp ` C ) |
|
| 4 | catcocl.c | |- ( ph -> C e. Cat ) |
|
| 5 | catcocl.x | |- ( ph -> X e. B ) |
|
| 6 | catcocl.y | |- ( ph -> Y e. B ) |
|
| 7 | catcocl.z | |- ( ph -> Z e. B ) |
|
| 8 | catcone0.f | |- ( ph -> ( X H Y ) =/= (/) ) |
|
| 9 | catcone0.g | |- ( ph -> ( Y H Z ) =/= (/) ) |
|
| 10 | n0 | |- ( ( X H Y ) =/= (/) <-> E. f f e. ( X H Y ) ) |
|
| 11 | n0 | |- ( ( Y H Z ) =/= (/) <-> E. g g e. ( Y H Z ) ) |
|
| 12 | 10 11 | anbi12i | |- ( ( ( X H Y ) =/= (/) /\ ( Y H Z ) =/= (/) ) <-> ( E. f f e. ( X H Y ) /\ E. g g e. ( Y H Z ) ) ) |
| 13 | exdistrv | |- ( E. f E. g ( f e. ( X H Y ) /\ g e. ( Y H Z ) ) <-> ( E. f f e. ( X H Y ) /\ E. g g e. ( Y H Z ) ) ) |
|
| 14 | 12 13 | sylbb2 | |- ( ( ( X H Y ) =/= (/) /\ ( Y H Z ) =/= (/) ) -> E. f E. g ( f e. ( X H Y ) /\ g e. ( Y H Z ) ) ) |
| 15 | 8 9 14 | syl2anc | |- ( ph -> E. f E. g ( f e. ( X H Y ) /\ g e. ( Y H Z ) ) ) |
| 16 | 15 | ancli | |- ( ph -> ( ph /\ E. f E. g ( f e. ( X H Y ) /\ g e. ( Y H Z ) ) ) ) |
| 17 | 19.42vv | |- ( E. f E. g ( ph /\ ( f e. ( X H Y ) /\ g e. ( Y H Z ) ) ) <-> ( ph /\ E. f E. g ( f e. ( X H Y ) /\ g e. ( Y H Z ) ) ) ) |
|
| 18 | 17 | biimpri | |- ( ( ph /\ E. f E. g ( f e. ( X H Y ) /\ g e. ( Y H Z ) ) ) -> E. f E. g ( ph /\ ( f e. ( X H Y ) /\ g e. ( Y H Z ) ) ) ) |
| 19 | 4 | adantr | |- ( ( ph /\ ( f e. ( X H Y ) /\ g e. ( Y H Z ) ) ) -> C e. Cat ) |
| 20 | 5 | adantr | |- ( ( ph /\ ( f e. ( X H Y ) /\ g e. ( Y H Z ) ) ) -> X e. B ) |
| 21 | 6 | adantr | |- ( ( ph /\ ( f e. ( X H Y ) /\ g e. ( Y H Z ) ) ) -> Y e. B ) |
| 22 | 7 | adantr | |- ( ( ph /\ ( f e. ( X H Y ) /\ g e. ( Y H Z ) ) ) -> Z e. B ) |
| 23 | simprl | |- ( ( ph /\ ( f e. ( X H Y ) /\ g e. ( Y H Z ) ) ) -> f e. ( X H Y ) ) |
|
| 24 | simprr | |- ( ( ph /\ ( f e. ( X H Y ) /\ g e. ( Y H Z ) ) ) -> g e. ( Y H Z ) ) |
|
| 25 | 1 2 3 19 20 21 22 23 24 | catcocl | |- ( ( ph /\ ( f e. ( X H Y ) /\ g e. ( Y H Z ) ) ) -> ( g ( <. X , Y >. .x. Z ) f ) e. ( X H Z ) ) |
| 26 | 25 | 2eximi | |- ( E. f E. g ( ph /\ ( f e. ( X H Y ) /\ g e. ( Y H Z ) ) ) -> E. f E. g ( g ( <. X , Y >. .x. Z ) f ) e. ( X H Z ) ) |
| 27 | ne0i | |- ( ( g ( <. X , Y >. .x. Z ) f ) e. ( X H Z ) -> ( X H Z ) =/= (/) ) |
|
| 28 | 27 | exlimivv | |- ( E. f E. g ( g ( <. X , Y >. .x. Z ) f ) e. ( X H Z ) -> ( X H Z ) =/= (/) ) |
| 29 | 16 18 26 28 | 4syl | |- ( ph -> ( X H Z ) =/= (/) ) |