This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering law. (Contributed by Mario Carneiro, 30-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovordg.1 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( x R y <-> ( z F x ) R ( z F y ) ) ) |
|
| caovordd.2 | |- ( ph -> A e. S ) |
||
| caovordd.3 | |- ( ph -> B e. S ) |
||
| caovordd.4 | |- ( ph -> C e. S ) |
||
| caovord2d.com | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) ) |
||
| caovord3d.5 | |- ( ph -> D e. S ) |
||
| Assertion | caovord3d | |- ( ph -> ( ( A F B ) = ( C F D ) -> ( A R C <-> D R B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovordg.1 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( x R y <-> ( z F x ) R ( z F y ) ) ) |
|
| 2 | caovordd.2 | |- ( ph -> A e. S ) |
|
| 3 | caovordd.3 | |- ( ph -> B e. S ) |
|
| 4 | caovordd.4 | |- ( ph -> C e. S ) |
|
| 5 | caovord2d.com | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) ) |
|
| 6 | caovord3d.5 | |- ( ph -> D e. S ) |
|
| 7 | breq1 | |- ( ( A F B ) = ( C F D ) -> ( ( A F B ) R ( C F B ) <-> ( C F D ) R ( C F B ) ) ) |
|
| 8 | 1 2 4 3 5 | caovord2d | |- ( ph -> ( A R C <-> ( A F B ) R ( C F B ) ) ) |
| 9 | 1 6 3 4 | caovordd | |- ( ph -> ( D R B <-> ( C F D ) R ( C F B ) ) ) |
| 10 | 8 9 | bibi12d | |- ( ph -> ( ( A R C <-> D R B ) <-> ( ( A F B ) R ( C F B ) <-> ( C F D ) R ( C F B ) ) ) ) |
| 11 | 7 10 | imbitrrid | |- ( ph -> ( ( A F B ) = ( C F D ) -> ( A R C <-> D R B ) ) ) |