This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering law. (Contributed by Mario Carneiro, 30-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovordg.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑥 𝑅 𝑦 ↔ ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ) | |
| caovordd.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | ||
| caovordd.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) | ||
| caovordd.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) | ||
| caovord2d.com | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 𝐹 𝑦 ) = ( 𝑦 𝐹 𝑥 ) ) | ||
| caovord3d.5 | ⊢ ( 𝜑 → 𝐷 ∈ 𝑆 ) | ||
| Assertion | caovord3d | ⊢ ( 𝜑 → ( ( 𝐴 𝐹 𝐵 ) = ( 𝐶 𝐹 𝐷 ) → ( 𝐴 𝑅 𝐶 ↔ 𝐷 𝑅 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovordg.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( 𝑥 𝑅 𝑦 ↔ ( 𝑧 𝐹 𝑥 ) 𝑅 ( 𝑧 𝐹 𝑦 ) ) ) | |
| 2 | caovordd.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) | |
| 3 | caovordd.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑆 ) | |
| 4 | caovordd.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑆 ) | |
| 5 | caovord2d.com | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 𝐹 𝑦 ) = ( 𝑦 𝐹 𝑥 ) ) | |
| 6 | caovord3d.5 | ⊢ ( 𝜑 → 𝐷 ∈ 𝑆 ) | |
| 7 | breq1 | ⊢ ( ( 𝐴 𝐹 𝐵 ) = ( 𝐶 𝐹 𝐷 ) → ( ( 𝐴 𝐹 𝐵 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ↔ ( 𝐶 𝐹 𝐷 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) | |
| 8 | 1 2 4 3 5 | caovord2d | ⊢ ( 𝜑 → ( 𝐴 𝑅 𝐶 ↔ ( 𝐴 𝐹 𝐵 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) |
| 9 | 1 6 3 4 | caovordd | ⊢ ( 𝜑 → ( 𝐷 𝑅 𝐵 ↔ ( 𝐶 𝐹 𝐷 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) |
| 10 | 8 9 | bibi12d | ⊢ ( 𝜑 → ( ( 𝐴 𝑅 𝐶 ↔ 𝐷 𝑅 𝐵 ) ↔ ( ( 𝐴 𝐹 𝐵 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ↔ ( 𝐶 𝐹 𝐷 ) 𝑅 ( 𝐶 𝐹 𝐵 ) ) ) ) |
| 11 | 7 10 | imbitrrid | ⊢ ( 𝜑 → ( ( 𝐴 𝐹 𝐵 ) = ( 𝐶 𝐹 𝐷 ) → ( 𝐴 𝑅 𝐶 ↔ 𝐷 𝑅 𝐵 ) ) ) |