This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert an operation ordering law to class notation. (Contributed by NM, 19-Feb-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovord.1 | |- A e. _V |
|
| caovord.2 | |- B e. _V |
||
| caovord.3 | |- ( z e. S -> ( x R y <-> ( z F x ) R ( z F y ) ) ) |
||
| Assertion | caovord | |- ( C e. S -> ( A R B <-> ( C F A ) R ( C F B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovord.1 | |- A e. _V |
|
| 2 | caovord.2 | |- B e. _V |
|
| 3 | caovord.3 | |- ( z e. S -> ( x R y <-> ( z F x ) R ( z F y ) ) ) |
|
| 4 | oveq1 | |- ( z = C -> ( z F A ) = ( C F A ) ) |
|
| 5 | oveq1 | |- ( z = C -> ( z F B ) = ( C F B ) ) |
|
| 6 | 4 5 | breq12d | |- ( z = C -> ( ( z F A ) R ( z F B ) <-> ( C F A ) R ( C F B ) ) ) |
| 7 | 6 | bibi2d | |- ( z = C -> ( ( A R B <-> ( z F A ) R ( z F B ) ) <-> ( A R B <-> ( C F A ) R ( C F B ) ) ) ) |
| 8 | breq1 | |- ( x = A -> ( x R y <-> A R y ) ) |
|
| 9 | oveq2 | |- ( x = A -> ( z F x ) = ( z F A ) ) |
|
| 10 | 9 | breq1d | |- ( x = A -> ( ( z F x ) R ( z F y ) <-> ( z F A ) R ( z F y ) ) ) |
| 11 | 8 10 | bibi12d | |- ( x = A -> ( ( x R y <-> ( z F x ) R ( z F y ) ) <-> ( A R y <-> ( z F A ) R ( z F y ) ) ) ) |
| 12 | breq2 | |- ( y = B -> ( A R y <-> A R B ) ) |
|
| 13 | oveq2 | |- ( y = B -> ( z F y ) = ( z F B ) ) |
|
| 14 | 13 | breq2d | |- ( y = B -> ( ( z F A ) R ( z F y ) <-> ( z F A ) R ( z F B ) ) ) |
| 15 | 12 14 | bibi12d | |- ( y = B -> ( ( A R y <-> ( z F A ) R ( z F y ) ) <-> ( A R B <-> ( z F A ) R ( z F B ) ) ) ) |
| 16 | 11 15 | sylan9bb | |- ( ( x = A /\ y = B ) -> ( ( x R y <-> ( z F x ) R ( z F y ) ) <-> ( A R B <-> ( z F A ) R ( z F B ) ) ) ) |
| 17 | 16 | imbi2d | |- ( ( x = A /\ y = B ) -> ( ( z e. S -> ( x R y <-> ( z F x ) R ( z F y ) ) ) <-> ( z e. S -> ( A R B <-> ( z F A ) R ( z F B ) ) ) ) ) |
| 18 | 1 2 17 3 | vtocl2 | |- ( z e. S -> ( A R B <-> ( z F A ) R ( z F B ) ) ) |
| 19 | 7 18 | vtoclga | |- ( C e. S -> ( A R B <-> ( C F A ) R ( C F B ) ) ) |