This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Operation ordering law with commuted arguments. (Contributed by Mario Carneiro, 30-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovordg.1 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( x R y <-> ( z F x ) R ( z F y ) ) ) |
|
| caovordd.2 | |- ( ph -> A e. S ) |
||
| caovordd.3 | |- ( ph -> B e. S ) |
||
| caovordd.4 | |- ( ph -> C e. S ) |
||
| caovord2d.com | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) ) |
||
| Assertion | caovord2d | |- ( ph -> ( A R B <-> ( A F C ) R ( B F C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovordg.1 | |- ( ( ph /\ ( x e. S /\ y e. S /\ z e. S ) ) -> ( x R y <-> ( z F x ) R ( z F y ) ) ) |
|
| 2 | caovordd.2 | |- ( ph -> A e. S ) |
|
| 3 | caovordd.3 | |- ( ph -> B e. S ) |
|
| 4 | caovordd.4 | |- ( ph -> C e. S ) |
|
| 5 | caovord2d.com | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x F y ) = ( y F x ) ) |
|
| 6 | 1 2 3 4 | caovordd | |- ( ph -> ( A R B <-> ( C F A ) R ( C F B ) ) ) |
| 7 | 5 4 2 | caovcomd | |- ( ph -> ( C F A ) = ( A F C ) ) |
| 8 | 5 4 3 | caovcomd | |- ( ph -> ( C F B ) = ( B F C ) ) |
| 9 | 7 8 | breq12d | |- ( ph -> ( ( C F A ) R ( C F B ) <-> ( A F C ) R ( B F C ) ) ) |
| 10 | 6 9 | bitrd | |- ( ph -> ( A R B <-> ( A F C ) R ( B F C ) ) ) |