This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert an operation associative law to class notation. (Contributed by NM, 26-Aug-1995) (Revised by Mario Carneiro, 26-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovass.1 | |- A e. _V |
|
| caovass.2 | |- B e. _V |
||
| caovass.3 | |- C e. _V |
||
| caovass.4 | |- ( ( x F y ) F z ) = ( x F ( y F z ) ) |
||
| Assertion | caovass | |- ( ( A F B ) F C ) = ( A F ( B F C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovass.1 | |- A e. _V |
|
| 2 | caovass.2 | |- B e. _V |
|
| 3 | caovass.3 | |- C e. _V |
|
| 4 | caovass.4 | |- ( ( x F y ) F z ) = ( x F ( y F z ) ) |
|
| 5 | tru | |- T. |
|
| 6 | 4 | a1i | |- ( ( T. /\ ( x e. _V /\ y e. _V /\ z e. _V ) ) -> ( ( x F y ) F z ) = ( x F ( y F z ) ) ) |
| 7 | 6 | caovassg | |- ( ( T. /\ ( A e. _V /\ B e. _V /\ C e. _V ) ) -> ( ( A F B ) F C ) = ( A F ( B F C ) ) ) |
| 8 | 5 7 | mpan | |- ( ( A e. _V /\ B e. _V /\ C e. _V ) -> ( ( A F B ) F C ) = ( A F ( B F C ) ) ) |
| 9 | 1 2 3 8 | mp3an | |- ( ( A F B ) F C ) = ( A F ( B F C ) ) |