This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer nncan -shaped laws to vectors of numbers. (Contributed by Stefan O'Rear, 27-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caonncan.i | |- ( ph -> I e. V ) |
|
| caonncan.a | |- ( ph -> A : I --> S ) |
||
| caonncan.b | |- ( ph -> B : I --> S ) |
||
| caonncan.z | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x M ( x M y ) ) = y ) |
||
| Assertion | caonncan | |- ( ph -> ( A oF M ( A oF M B ) ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caonncan.i | |- ( ph -> I e. V ) |
|
| 2 | caonncan.a | |- ( ph -> A : I --> S ) |
|
| 3 | caonncan.b | |- ( ph -> B : I --> S ) |
|
| 4 | caonncan.z | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x M ( x M y ) ) = y ) |
|
| 5 | 2 | ffvelcdmda | |- ( ( ph /\ z e. I ) -> ( A ` z ) e. S ) |
| 6 | 3 | ffvelcdmda | |- ( ( ph /\ z e. I ) -> ( B ` z ) e. S ) |
| 7 | 4 | ralrimivva | |- ( ph -> A. x e. S A. y e. S ( x M ( x M y ) ) = y ) |
| 8 | 7 | adantr | |- ( ( ph /\ z e. I ) -> A. x e. S A. y e. S ( x M ( x M y ) ) = y ) |
| 9 | id | |- ( x = ( A ` z ) -> x = ( A ` z ) ) |
|
| 10 | oveq1 | |- ( x = ( A ` z ) -> ( x M y ) = ( ( A ` z ) M y ) ) |
|
| 11 | 9 10 | oveq12d | |- ( x = ( A ` z ) -> ( x M ( x M y ) ) = ( ( A ` z ) M ( ( A ` z ) M y ) ) ) |
| 12 | 11 | eqeq1d | |- ( x = ( A ` z ) -> ( ( x M ( x M y ) ) = y <-> ( ( A ` z ) M ( ( A ` z ) M y ) ) = y ) ) |
| 13 | oveq2 | |- ( y = ( B ` z ) -> ( ( A ` z ) M y ) = ( ( A ` z ) M ( B ` z ) ) ) |
|
| 14 | 13 | oveq2d | |- ( y = ( B ` z ) -> ( ( A ` z ) M ( ( A ` z ) M y ) ) = ( ( A ` z ) M ( ( A ` z ) M ( B ` z ) ) ) ) |
| 15 | id | |- ( y = ( B ` z ) -> y = ( B ` z ) ) |
|
| 16 | 14 15 | eqeq12d | |- ( y = ( B ` z ) -> ( ( ( A ` z ) M ( ( A ` z ) M y ) ) = y <-> ( ( A ` z ) M ( ( A ` z ) M ( B ` z ) ) ) = ( B ` z ) ) ) |
| 17 | 12 16 | rspc2va | |- ( ( ( ( A ` z ) e. S /\ ( B ` z ) e. S ) /\ A. x e. S A. y e. S ( x M ( x M y ) ) = y ) -> ( ( A ` z ) M ( ( A ` z ) M ( B ` z ) ) ) = ( B ` z ) ) |
| 18 | 5 6 8 17 | syl21anc | |- ( ( ph /\ z e. I ) -> ( ( A ` z ) M ( ( A ` z ) M ( B ` z ) ) ) = ( B ` z ) ) |
| 19 | 18 | mpteq2dva | |- ( ph -> ( z e. I |-> ( ( A ` z ) M ( ( A ` z ) M ( B ` z ) ) ) ) = ( z e. I |-> ( B ` z ) ) ) |
| 20 | fvexd | |- ( ( ph /\ z e. I ) -> ( A ` z ) e. _V ) |
|
| 21 | ovexd | |- ( ( ph /\ z e. I ) -> ( ( A ` z ) M ( B ` z ) ) e. _V ) |
|
| 22 | 2 | feqmptd | |- ( ph -> A = ( z e. I |-> ( A ` z ) ) ) |
| 23 | fvexd | |- ( ( ph /\ z e. I ) -> ( B ` z ) e. _V ) |
|
| 24 | 3 | feqmptd | |- ( ph -> B = ( z e. I |-> ( B ` z ) ) ) |
| 25 | 1 20 23 22 24 | offval2 | |- ( ph -> ( A oF M B ) = ( z e. I |-> ( ( A ` z ) M ( B ` z ) ) ) ) |
| 26 | 1 20 21 22 25 | offval2 | |- ( ph -> ( A oF M ( A oF M B ) ) = ( z e. I |-> ( ( A ` z ) M ( ( A ` z ) M ( B ` z ) ) ) ) ) |
| 27 | 19 26 24 | 3eqtr4d | |- ( ph -> ( A oF M ( A oF M B ) ) = B ) |