This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer a cancellation/identity law to the function operation. (Contributed by SN, 16-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caofref.1 | |- ( ph -> A e. V ) |
|
| caofref.2 | |- ( ph -> F : A --> S ) |
||
| caofcom.3 | |- ( ph -> G : A --> S ) |
||
| caofidlcan.4 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( ( x R y ) = y <-> x = .0. ) ) |
||
| Assertion | caofidlcan | |- ( ph -> ( ( F oF R G ) = G <-> F = ( A X. { .0. } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caofref.1 | |- ( ph -> A e. V ) |
|
| 2 | caofref.2 | |- ( ph -> F : A --> S ) |
|
| 3 | caofcom.3 | |- ( ph -> G : A --> S ) |
|
| 4 | caofidlcan.4 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( ( x R y ) = y <-> x = .0. ) ) |
|
| 5 | 2 | ffvelcdmda | |- ( ( ph /\ w e. A ) -> ( F ` w ) e. S ) |
| 6 | 3 | ffvelcdmda | |- ( ( ph /\ w e. A ) -> ( G ` w ) e. S ) |
| 7 | 5 6 | jca | |- ( ( ph /\ w e. A ) -> ( ( F ` w ) e. S /\ ( G ` w ) e. S ) ) |
| 8 | 4 | ralrimivva | |- ( ph -> A. x e. S A. y e. S ( ( x R y ) = y <-> x = .0. ) ) |
| 9 | oveq1 | |- ( x = ( F ` w ) -> ( x R y ) = ( ( F ` w ) R y ) ) |
|
| 10 | 9 | eqeq1d | |- ( x = ( F ` w ) -> ( ( x R y ) = y <-> ( ( F ` w ) R y ) = y ) ) |
| 11 | eqeq1 | |- ( x = ( F ` w ) -> ( x = .0. <-> ( F ` w ) = .0. ) ) |
|
| 12 | 10 11 | bibi12d | |- ( x = ( F ` w ) -> ( ( ( x R y ) = y <-> x = .0. ) <-> ( ( ( F ` w ) R y ) = y <-> ( F ` w ) = .0. ) ) ) |
| 13 | oveq2 | |- ( y = ( G ` w ) -> ( ( F ` w ) R y ) = ( ( F ` w ) R ( G ` w ) ) ) |
|
| 14 | id | |- ( y = ( G ` w ) -> y = ( G ` w ) ) |
|
| 15 | 13 14 | eqeq12d | |- ( y = ( G ` w ) -> ( ( ( F ` w ) R y ) = y <-> ( ( F ` w ) R ( G ` w ) ) = ( G ` w ) ) ) |
| 16 | 15 | bibi1d | |- ( y = ( G ` w ) -> ( ( ( ( F ` w ) R y ) = y <-> ( F ` w ) = .0. ) <-> ( ( ( F ` w ) R ( G ` w ) ) = ( G ` w ) <-> ( F ` w ) = .0. ) ) ) |
| 17 | 12 16 | rspc2v | |- ( ( ( F ` w ) e. S /\ ( G ` w ) e. S ) -> ( A. x e. S A. y e. S ( ( x R y ) = y <-> x = .0. ) -> ( ( ( F ` w ) R ( G ` w ) ) = ( G ` w ) <-> ( F ` w ) = .0. ) ) ) |
| 18 | 8 17 | mpan9 | |- ( ( ph /\ ( ( F ` w ) e. S /\ ( G ` w ) e. S ) ) -> ( ( ( F ` w ) R ( G ` w ) ) = ( G ` w ) <-> ( F ` w ) = .0. ) ) |
| 19 | 7 18 | syldan | |- ( ( ph /\ w e. A ) -> ( ( ( F ` w ) R ( G ` w ) ) = ( G ` w ) <-> ( F ` w ) = .0. ) ) |
| 20 | 19 | ralbidva | |- ( ph -> ( A. w e. A ( ( F ` w ) R ( G ` w ) ) = ( G ` w ) <-> A. w e. A ( F ` w ) = .0. ) ) |
| 21 | ovexd | |- ( ( ph /\ w e. A ) -> ( ( F ` w ) R ( G ` w ) ) e. _V ) |
|
| 22 | 21 | ralrimiva | |- ( ph -> A. w e. A ( ( F ` w ) R ( G ` w ) ) e. _V ) |
| 23 | mpteqb | |- ( A. w e. A ( ( F ` w ) R ( G ` w ) ) e. _V -> ( ( w e. A |-> ( ( F ` w ) R ( G ` w ) ) ) = ( w e. A |-> ( G ` w ) ) <-> A. w e. A ( ( F ` w ) R ( G ` w ) ) = ( G ` w ) ) ) |
|
| 24 | 22 23 | syl | |- ( ph -> ( ( w e. A |-> ( ( F ` w ) R ( G ` w ) ) ) = ( w e. A |-> ( G ` w ) ) <-> A. w e. A ( ( F ` w ) R ( G ` w ) ) = ( G ` w ) ) ) |
| 25 | 5 | ralrimiva | |- ( ph -> A. w e. A ( F ` w ) e. S ) |
| 26 | mpteqb | |- ( A. w e. A ( F ` w ) e. S -> ( ( w e. A |-> ( F ` w ) ) = ( w e. A |-> .0. ) <-> A. w e. A ( F ` w ) = .0. ) ) |
|
| 27 | 25 26 | syl | |- ( ph -> ( ( w e. A |-> ( F ` w ) ) = ( w e. A |-> .0. ) <-> A. w e. A ( F ` w ) = .0. ) ) |
| 28 | 20 24 27 | 3bitr4d | |- ( ph -> ( ( w e. A |-> ( ( F ` w ) R ( G ` w ) ) ) = ( w e. A |-> ( G ` w ) ) <-> ( w e. A |-> ( F ` w ) ) = ( w e. A |-> .0. ) ) ) |
| 29 | 2 | feqmptd | |- ( ph -> F = ( w e. A |-> ( F ` w ) ) ) |
| 30 | 3 | feqmptd | |- ( ph -> G = ( w e. A |-> ( G ` w ) ) ) |
| 31 | 1 5 6 29 30 | offval2 | |- ( ph -> ( F oF R G ) = ( w e. A |-> ( ( F ` w ) R ( G ` w ) ) ) ) |
| 32 | 31 30 | eqeq12d | |- ( ph -> ( ( F oF R G ) = G <-> ( w e. A |-> ( ( F ` w ) R ( G ` w ) ) ) = ( w e. A |-> ( G ` w ) ) ) ) |
| 33 | fconstmpt | |- ( A X. { .0. } ) = ( w e. A |-> .0. ) |
|
| 34 | 33 | a1i | |- ( ph -> ( A X. { .0. } ) = ( w e. A |-> .0. ) ) |
| 35 | 29 34 | eqeq12d | |- ( ph -> ( F = ( A X. { .0. } ) <-> ( w e. A |-> ( F ` w ) ) = ( w e. A |-> .0. ) ) ) |
| 36 | 28 32 35 | 3bitr4d | |- ( ph -> ( ( F oF R G ) = G <-> F = ( A X. { .0. } ) ) ) |