This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer a relation subset law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caofref.1 | |- ( ph -> A e. V ) |
|
| caofref.2 | |- ( ph -> F : A --> S ) |
||
| caofcom.3 | |- ( ph -> G : A --> S ) |
||
| caofrss.4 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x R y -> x T y ) ) |
||
| Assertion | caofrss | |- ( ph -> ( F oR R G -> F oR T G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caofref.1 | |- ( ph -> A e. V ) |
|
| 2 | caofref.2 | |- ( ph -> F : A --> S ) |
|
| 3 | caofcom.3 | |- ( ph -> G : A --> S ) |
|
| 4 | caofrss.4 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x R y -> x T y ) ) |
|
| 5 | 2 | ffvelcdmda | |- ( ( ph /\ w e. A ) -> ( F ` w ) e. S ) |
| 6 | 3 | ffvelcdmda | |- ( ( ph /\ w e. A ) -> ( G ` w ) e. S ) |
| 7 | 4 | ralrimivva | |- ( ph -> A. x e. S A. y e. S ( x R y -> x T y ) ) |
| 8 | 7 | adantr | |- ( ( ph /\ w e. A ) -> A. x e. S A. y e. S ( x R y -> x T y ) ) |
| 9 | breq1 | |- ( x = ( F ` w ) -> ( x R y <-> ( F ` w ) R y ) ) |
|
| 10 | breq1 | |- ( x = ( F ` w ) -> ( x T y <-> ( F ` w ) T y ) ) |
|
| 11 | 9 10 | imbi12d | |- ( x = ( F ` w ) -> ( ( x R y -> x T y ) <-> ( ( F ` w ) R y -> ( F ` w ) T y ) ) ) |
| 12 | breq2 | |- ( y = ( G ` w ) -> ( ( F ` w ) R y <-> ( F ` w ) R ( G ` w ) ) ) |
|
| 13 | breq2 | |- ( y = ( G ` w ) -> ( ( F ` w ) T y <-> ( F ` w ) T ( G ` w ) ) ) |
|
| 14 | 12 13 | imbi12d | |- ( y = ( G ` w ) -> ( ( ( F ` w ) R y -> ( F ` w ) T y ) <-> ( ( F ` w ) R ( G ` w ) -> ( F ` w ) T ( G ` w ) ) ) ) |
| 15 | 11 14 | rspc2va | |- ( ( ( ( F ` w ) e. S /\ ( G ` w ) e. S ) /\ A. x e. S A. y e. S ( x R y -> x T y ) ) -> ( ( F ` w ) R ( G ` w ) -> ( F ` w ) T ( G ` w ) ) ) |
| 16 | 5 6 8 15 | syl21anc | |- ( ( ph /\ w e. A ) -> ( ( F ` w ) R ( G ` w ) -> ( F ` w ) T ( G ` w ) ) ) |
| 17 | 16 | ralimdva | |- ( ph -> ( A. w e. A ( F ` w ) R ( G ` w ) -> A. w e. A ( F ` w ) T ( G ` w ) ) ) |
| 18 | 2 | ffnd | |- ( ph -> F Fn A ) |
| 19 | 3 | ffnd | |- ( ph -> G Fn A ) |
| 20 | inidm | |- ( A i^i A ) = A |
|
| 21 | eqidd | |- ( ( ph /\ w e. A ) -> ( F ` w ) = ( F ` w ) ) |
|
| 22 | eqidd | |- ( ( ph /\ w e. A ) -> ( G ` w ) = ( G ` w ) ) |
|
| 23 | 18 19 1 1 20 21 22 | ofrfval | |- ( ph -> ( F oR R G <-> A. w e. A ( F ` w ) R ( G ` w ) ) ) |
| 24 | 18 19 1 1 20 21 22 | ofrfval | |- ( ph -> ( F oR T G <-> A. w e. A ( F ` w ) T ( G ` w ) ) ) |
| 25 | 17 23 24 | 3imtr4d | |- ( ph -> ( F oR R G -> F oR T G ) ) |