This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer a commutative law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caofref.1 | |- ( ph -> A e. V ) |
|
| caofref.2 | |- ( ph -> F : A --> S ) |
||
| caofcom.3 | |- ( ph -> G : A --> S ) |
||
| caofcom.4 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x R y ) = ( y R x ) ) |
||
| Assertion | caofcom | |- ( ph -> ( F oF R G ) = ( G oF R F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caofref.1 | |- ( ph -> A e. V ) |
|
| 2 | caofref.2 | |- ( ph -> F : A --> S ) |
|
| 3 | caofcom.3 | |- ( ph -> G : A --> S ) |
|
| 4 | caofcom.4 | |- ( ( ph /\ ( x e. S /\ y e. S ) ) -> ( x R y ) = ( y R x ) ) |
|
| 5 | 2 | ffvelcdmda | |- ( ( ph /\ w e. A ) -> ( F ` w ) e. S ) |
| 6 | 3 | ffvelcdmda | |- ( ( ph /\ w e. A ) -> ( G ` w ) e. S ) |
| 7 | 5 6 | jca | |- ( ( ph /\ w e. A ) -> ( ( F ` w ) e. S /\ ( G ` w ) e. S ) ) |
| 8 | 4 | caovcomg | |- ( ( ph /\ ( ( F ` w ) e. S /\ ( G ` w ) e. S ) ) -> ( ( F ` w ) R ( G ` w ) ) = ( ( G ` w ) R ( F ` w ) ) ) |
| 9 | 7 8 | syldan | |- ( ( ph /\ w e. A ) -> ( ( F ` w ) R ( G ` w ) ) = ( ( G ` w ) R ( F ` w ) ) ) |
| 10 | 9 | mpteq2dva | |- ( ph -> ( w e. A |-> ( ( F ` w ) R ( G ` w ) ) ) = ( w e. A |-> ( ( G ` w ) R ( F ` w ) ) ) ) |
| 11 | 2 | feqmptd | |- ( ph -> F = ( w e. A |-> ( F ` w ) ) ) |
| 12 | 3 | feqmptd | |- ( ph -> G = ( w e. A |-> ( G ` w ) ) ) |
| 13 | 1 5 6 11 12 | offval2 | |- ( ph -> ( F oF R G ) = ( w e. A |-> ( ( F ` w ) R ( G ` w ) ) ) ) |
| 14 | 1 6 5 12 11 | offval2 | |- ( ph -> ( G oF R F ) = ( w e. A |-> ( ( G ` w ) R ( F ` w ) ) ) ) |
| 15 | 10 13 14 | 3eqtr4d | |- ( ph -> ( F oF R G ) = ( G oF R F ) ) |