This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A range Cartesian product is a subset of the class of ordered triples. This is Scott Fenton's txpss3v with a different symbol, see https://github.com/metamath/set.mm/issues/2469 . (Contributed by Scott Fenton, 31-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrnss3v | |- ( A |X. B ) C_ ( _V X. ( _V X. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xrn | |- ( A |X. B ) = ( ( `' ( 1st |` ( _V X. _V ) ) o. A ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. B ) ) |
|
| 2 | inss1 | |- ( ( `' ( 1st |` ( _V X. _V ) ) o. A ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. B ) ) C_ ( `' ( 1st |` ( _V X. _V ) ) o. A ) |
|
| 3 | relco | |- Rel ( `' ( 1st |` ( _V X. _V ) ) o. A ) |
|
| 4 | vex | |- z e. _V |
|
| 5 | vex | |- y e. _V |
|
| 6 | 4 5 | brcnv | |- ( z `' ( 1st |` ( _V X. _V ) ) y <-> y ( 1st |` ( _V X. _V ) ) z ) |
| 7 | 4 | brresi | |- ( y ( 1st |` ( _V X. _V ) ) z <-> ( y e. ( _V X. _V ) /\ y 1st z ) ) |
| 8 | 7 | simplbi | |- ( y ( 1st |` ( _V X. _V ) ) z -> y e. ( _V X. _V ) ) |
| 9 | 6 8 | sylbi | |- ( z `' ( 1st |` ( _V X. _V ) ) y -> y e. ( _V X. _V ) ) |
| 10 | 9 | adantl | |- ( ( x A z /\ z `' ( 1st |` ( _V X. _V ) ) y ) -> y e. ( _V X. _V ) ) |
| 11 | 10 | exlimiv | |- ( E. z ( x A z /\ z `' ( 1st |` ( _V X. _V ) ) y ) -> y e. ( _V X. _V ) ) |
| 12 | vex | |- x e. _V |
|
| 13 | 12 5 | opelco | |- ( <. x , y >. e. ( `' ( 1st |` ( _V X. _V ) ) o. A ) <-> E. z ( x A z /\ z `' ( 1st |` ( _V X. _V ) ) y ) ) |
| 14 | opelxp | |- ( <. x , y >. e. ( _V X. ( _V X. _V ) ) <-> ( x e. _V /\ y e. ( _V X. _V ) ) ) |
|
| 15 | 12 14 | mpbiran | |- ( <. x , y >. e. ( _V X. ( _V X. _V ) ) <-> y e. ( _V X. _V ) ) |
| 16 | 11 13 15 | 3imtr4i | |- ( <. x , y >. e. ( `' ( 1st |` ( _V X. _V ) ) o. A ) -> <. x , y >. e. ( _V X. ( _V X. _V ) ) ) |
| 17 | 3 16 | relssi | |- ( `' ( 1st |` ( _V X. _V ) ) o. A ) C_ ( _V X. ( _V X. _V ) ) |
| 18 | 2 17 | sstri | |- ( ( `' ( 1st |` ( _V X. _V ) ) o. A ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. B ) ) C_ ( _V X. ( _V X. _V ) ) |
| 19 | 1 18 | eqsstri | |- ( A |X. B ) C_ ( _V X. ( _V X. _V ) ) |