This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for parallel product when the first argument is not an ordered pair. (Contributed by Scott Fenton, 3-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brpprod3.1 | |- X e. _V |
|
| brpprod3.2 | |- Y e. _V |
||
| brpprod3.3 | |- Z e. _V |
||
| Assertion | brpprod3b | |- ( X pprod ( R , S ) <. Y , Z >. <-> E. z E. w ( X = <. z , w >. /\ z R Y /\ w S Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brpprod3.1 | |- X e. _V |
|
| 2 | brpprod3.2 | |- Y e. _V |
|
| 3 | brpprod3.3 | |- Z e. _V |
|
| 4 | pprodcnveq | |- pprod ( R , S ) = `' pprod ( `' R , `' S ) |
|
| 5 | 4 | breqi | |- ( X pprod ( R , S ) <. Y , Z >. <-> X `' pprod ( `' R , `' S ) <. Y , Z >. ) |
| 6 | opex | |- <. Y , Z >. e. _V |
|
| 7 | 1 6 | brcnv | |- ( X `' pprod ( `' R , `' S ) <. Y , Z >. <-> <. Y , Z >. pprod ( `' R , `' S ) X ) |
| 8 | 2 3 1 | brpprod3a | |- ( <. Y , Z >. pprod ( `' R , `' S ) X <-> E. z E. w ( X = <. z , w >. /\ Y `' R z /\ Z `' S w ) ) |
| 9 | 7 8 | bitri | |- ( X `' pprod ( `' R , `' S ) <. Y , Z >. <-> E. z E. w ( X = <. z , w >. /\ Y `' R z /\ Z `' S w ) ) |
| 10 | biid | |- ( X = <. z , w >. <-> X = <. z , w >. ) |
|
| 11 | vex | |- z e. _V |
|
| 12 | 2 11 | brcnv | |- ( Y `' R z <-> z R Y ) |
| 13 | vex | |- w e. _V |
|
| 14 | 3 13 | brcnv | |- ( Z `' S w <-> w S Z ) |
| 15 | 10 12 14 | 3anbi123i | |- ( ( X = <. z , w >. /\ Y `' R z /\ Z `' S w ) <-> ( X = <. z , w >. /\ z R Y /\ w S Z ) ) |
| 16 | 15 | 2exbii | |- ( E. z E. w ( X = <. z , w >. /\ Y `' R z /\ Z `' S w ) <-> E. z E. w ( X = <. z , w >. /\ z R Y /\ w S Z ) ) |
| 17 | 9 16 | bitri | |- ( X `' pprod ( `' R , `' S ) <. Y , Z >. <-> E. z E. w ( X = <. z , w >. /\ z R Y /\ w S Z ) ) |
| 18 | 5 17 | bitri | |- ( X pprod ( R , S ) <. Y , Z >. <-> E. z E. w ( X = <. z , w >. /\ z R Y /\ w S Z ) ) |