This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The law of concretion for the converse of operation class abstraction. (Contributed by Peter Mazsa, 25-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brrabga.1 | |- ( ( x = A /\ y = B /\ z = C ) -> ( ph <-> ps ) ) |
|
| brcnvrabga.2 | |- R = `' { <. <. y , z >. , x >. | ph } |
||
| Assertion | brcnvrabga | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A R <. B , C >. <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrabga.1 | |- ( ( x = A /\ y = B /\ z = C ) -> ( ph <-> ps ) ) |
|
| 2 | brcnvrabga.2 | |- R = `' { <. <. y , z >. , x >. | ph } |
|
| 3 | relcnv | |- Rel `' { <. <. y , z >. , x >. | ph } |
|
| 4 | 2 | releqi | |- ( Rel R <-> Rel `' { <. <. y , z >. , x >. | ph } ) |
| 5 | 3 4 | mpbir | |- Rel R |
| 6 | 5 | relbrcnv | |- ( <. B , C >. `' R A <-> A R <. B , C >. ) |
| 7 | 1 | 3coml | |- ( ( y = B /\ z = C /\ x = A ) -> ( ph <-> ps ) ) |
| 8 | 2 | cnveqi | |- `' R = `' `' { <. <. y , z >. , x >. | ph } |
| 9 | reloprab | |- Rel { <. <. y , z >. , x >. | ph } |
|
| 10 | dfrel2 | |- ( Rel { <. <. y , z >. , x >. | ph } <-> `' `' { <. <. y , z >. , x >. | ph } = { <. <. y , z >. , x >. | ph } ) |
|
| 11 | 9 10 | mpbi | |- `' `' { <. <. y , z >. , x >. | ph } = { <. <. y , z >. , x >. | ph } |
| 12 | 8 11 | eqtri | |- `' R = { <. <. y , z >. , x >. | ph } |
| 13 | 7 12 | brrabga | |- ( ( B e. W /\ C e. X /\ A e. V ) -> ( <. B , C >. `' R A <-> ps ) ) |
| 14 | 13 | 3comr | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( <. B , C >. `' R A <-> ps ) ) |
| 15 | 6 14 | bitr3id | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( A R <. B , C >. <-> ps ) ) |