This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The law of concretion for operation class abstraction. (Contributed by Peter Mazsa, 24-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | brrabga.1 | |- ( ( x = A /\ y = B /\ z = C ) -> ( ph <-> ps ) ) |
|
| brrabga.2 | |- R = { <. <. x , y >. , z >. | ph } |
||
| Assertion | brrabga | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( <. A , B >. R C <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrabga.1 | |- ( ( x = A /\ y = B /\ z = C ) -> ( ph <-> ps ) ) |
|
| 2 | brrabga.2 | |- R = { <. <. x , y >. , z >. | ph } |
|
| 3 | df-br | |- ( <. A , B >. R C <-> <. <. A , B >. , C >. e. R ) |
|
| 4 | 2 | eleq2i | |- ( <. <. A , B >. , C >. e. R <-> <. <. A , B >. , C >. e. { <. <. x , y >. , z >. | ph } ) |
| 5 | 3 4 | bitri | |- ( <. A , B >. R C <-> <. <. A , B >. , C >. e. { <. <. x , y >. , z >. | ph } ) |
| 6 | 1 | eloprabga | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( <. <. A , B >. , C >. e. { <. <. x , y >. , z >. | ph } <-> ps ) ) |
| 7 | 5 6 | bitrid | |- ( ( A e. V /\ B e. W /\ C e. X ) -> ( <. A , B >. R C <-> ps ) ) |