This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the cartesian product function. See brcart for its value. (Contributed by Scott Fenton, 11-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cart | |- Cart = ( ( ( _V X. _V ) X. _V ) \ ran ( ( _V (x) _E ) /_\ ( pprod ( _E , _E ) (x) _V ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccart | |- Cart |
|
| 1 | cvv | |- _V |
|
| 2 | 1 1 | cxp | |- ( _V X. _V ) |
| 3 | 2 1 | cxp | |- ( ( _V X. _V ) X. _V ) |
| 4 | cep | |- _E |
|
| 5 | 1 4 | ctxp | |- ( _V (x) _E ) |
| 6 | 4 4 | cpprod | |- pprod ( _E , _E ) |
| 7 | 6 1 | ctxp | |- ( pprod ( _E , _E ) (x) _V ) |
| 8 | 5 7 | csymdif | |- ( ( _V (x) _E ) /_\ ( pprod ( _E , _E ) (x) _V ) ) |
| 9 | 8 | crn | |- ran ( ( _V (x) _E ) /_\ ( pprod ( _E , _E ) (x) _V ) ) |
| 10 | 3 9 | cdif | |- ( ( ( _V X. _V ) X. _V ) \ ran ( ( _V (x) _E ) /_\ ( pprod ( _E , _E ) (x) _V ) ) ) |
| 11 | 0 10 | wceq | |- Cart = ( ( ( _V X. _V ) X. _V ) \ ran ( ( _V (x) _E ) /_\ ( pprod ( _E , _E ) (x) _V ) ) ) |