This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain of the range Cartesian product with the converse epsilon relation combined with the union with the converse epsilon, restricted. (Contributed by Peter Mazsa, 28-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmxrnuncnvepres | |- dom ( ( ( R |X. `' _E ) u. `' _E ) |` A ) = ( A \ { (/) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmuncnvepres | |- dom ( ( ( R |X. `' _E ) u. `' _E ) |` A ) = ( A i^i ( dom ( R |X. `' _E ) u. ( _V \ { (/) } ) ) ) |
|
| 2 | dmxrncnvep | |- dom ( R |X. `' _E ) = ( dom R \ { (/) } ) |
|
| 3 | 2 | uneq1i | |- ( dom ( R |X. `' _E ) u. ( _V \ { (/) } ) ) = ( ( dom R \ { (/) } ) u. ( _V \ { (/) } ) ) |
| 4 | difundir | |- ( ( dom R u. _V ) \ { (/) } ) = ( ( dom R \ { (/) } ) u. ( _V \ { (/) } ) ) |
|
| 5 | unv | |- ( dom R u. _V ) = _V |
|
| 6 | 5 | difeq1i | |- ( ( dom R u. _V ) \ { (/) } ) = ( _V \ { (/) } ) |
| 7 | 3 4 6 | 3eqtr2i | |- ( dom ( R |X. `' _E ) u. ( _V \ { (/) } ) ) = ( _V \ { (/) } ) |
| 8 | 7 | ineq2i | |- ( A i^i ( dom ( R |X. `' _E ) u. ( _V \ { (/) } ) ) ) = ( A i^i ( _V \ { (/) } ) ) |
| 9 | invdif | |- ( A i^i ( _V \ { (/) } ) ) = ( A \ { (/) } ) |
|
| 10 | 1 8 9 | 3eqtri | |- dom ( ( ( R |X. `' _E ) u. `' _E ) |` A ) = ( A \ { (/) } ) |