This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Recover the base set from a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | psmetdmdm | |- ( D e. ( PsMet ` X ) -> X = dom dom D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex | |- ( D e. ( PsMet ` X ) -> X e. _V ) |
|
| 2 | ispsmet | |- ( X e. _V -> ( D e. ( PsMet ` X ) <-> ( D : ( X X. X ) --> RR* /\ A. x e. X ( ( x D x ) = 0 /\ A. y e. X A. z e. X ( x D y ) <_ ( ( z D x ) +e ( z D y ) ) ) ) ) ) |
|
| 3 | 2 | biimpa | |- ( ( X e. _V /\ D e. ( PsMet ` X ) ) -> ( D : ( X X. X ) --> RR* /\ A. x e. X ( ( x D x ) = 0 /\ A. y e. X A. z e. X ( x D y ) <_ ( ( z D x ) +e ( z D y ) ) ) ) ) |
| 4 | 1 3 | mpancom | |- ( D e. ( PsMet ` X ) -> ( D : ( X X. X ) --> RR* /\ A. x e. X ( ( x D x ) = 0 /\ A. y e. X A. z e. X ( x D y ) <_ ( ( z D x ) +e ( z D y ) ) ) ) ) |
| 5 | 4 | simpld | |- ( D e. ( PsMet ` X ) -> D : ( X X. X ) --> RR* ) |
| 6 | fdm | |- ( D : ( X X. X ) --> RR* -> dom D = ( X X. X ) ) |
|
| 7 | 6 | dmeqd | |- ( D : ( X X. X ) --> RR* -> dom dom D = dom ( X X. X ) ) |
| 8 | 5 7 | syl | |- ( D e. ( PsMet ` X ) -> dom dom D = dom ( X X. X ) ) |
| 9 | dmxpid | |- dom ( X X. X ) = X |
|
| 10 | 8 9 | eqtr2di | |- ( D e. ( PsMet ` X ) -> X = dom dom D ) |