This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the monoid of endomorphisms on an object of a category. (Contributed by BJ, 5-Apr-2024) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bj-endval.c | |- ( ph -> C e. Cat ) |
|
| bj-endval.x | |- ( ph -> X e. ( Base ` C ) ) |
||
| Assertion | bj-endval | |- ( ph -> ( ( End ` C ) ` X ) = { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-endval.c | |- ( ph -> C e. Cat ) |
|
| 2 | bj-endval.x | |- ( ph -> X e. ( Base ` C ) ) |
|
| 3 | df-bj-end | |- End = ( c e. Cat |-> ( x e. ( Base ` c ) |-> { <. ( Base ` ndx ) , ( x ( Hom ` c ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` c ) x ) >. } ) ) |
|
| 4 | fveq2 | |- ( c = C -> ( Base ` c ) = ( Base ` C ) ) |
|
| 5 | fveq2 | |- ( c = C -> ( Hom ` c ) = ( Hom ` C ) ) |
|
| 6 | 5 | oveqd | |- ( c = C -> ( x ( Hom ` c ) x ) = ( x ( Hom ` C ) x ) ) |
| 7 | 6 | opeq2d | |- ( c = C -> <. ( Base ` ndx ) , ( x ( Hom ` c ) x ) >. = <. ( Base ` ndx ) , ( x ( Hom ` C ) x ) >. ) |
| 8 | fveq2 | |- ( c = C -> ( comp ` c ) = ( comp ` C ) ) |
|
| 9 | 8 | oveqd | |- ( c = C -> ( <. x , x >. ( comp ` c ) x ) = ( <. x , x >. ( comp ` C ) x ) ) |
| 10 | 9 | opeq2d | |- ( c = C -> <. ( +g ` ndx ) , ( <. x , x >. ( comp ` c ) x ) >. = <. ( +g ` ndx ) , ( <. x , x >. ( comp ` C ) x ) >. ) |
| 11 | 7 10 | preq12d | |- ( c = C -> { <. ( Base ` ndx ) , ( x ( Hom ` c ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` c ) x ) >. } = { <. ( Base ` ndx ) , ( x ( Hom ` C ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` C ) x ) >. } ) |
| 12 | 4 11 | mpteq12dv | |- ( c = C -> ( x e. ( Base ` c ) |-> { <. ( Base ` ndx ) , ( x ( Hom ` c ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` c ) x ) >. } ) = ( x e. ( Base ` C ) |-> { <. ( Base ` ndx ) , ( x ( Hom ` C ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` C ) x ) >. } ) ) |
| 13 | fvex | |- ( Base ` C ) e. _V |
|
| 14 | 13 | mptex | |- ( x e. ( Base ` C ) |-> { <. ( Base ` ndx ) , ( x ( Hom ` C ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` C ) x ) >. } ) e. _V |
| 15 | 14 | a1i | |- ( ph -> ( x e. ( Base ` C ) |-> { <. ( Base ` ndx ) , ( x ( Hom ` C ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` C ) x ) >. } ) e. _V ) |
| 16 | 3 12 1 15 | fvmptd3 | |- ( ph -> ( End ` C ) = ( x e. ( Base ` C ) |-> { <. ( Base ` ndx ) , ( x ( Hom ` C ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` C ) x ) >. } ) ) |
| 17 | id | |- ( x = X -> x = X ) |
|
| 18 | 17 17 | oveq12d | |- ( x = X -> ( x ( Hom ` C ) x ) = ( X ( Hom ` C ) X ) ) |
| 19 | 18 | opeq2d | |- ( x = X -> <. ( Base ` ndx ) , ( x ( Hom ` C ) x ) >. = <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. ) |
| 20 | 17 17 | opeq12d | |- ( x = X -> <. x , x >. = <. X , X >. ) |
| 21 | 20 17 | oveq12d | |- ( x = X -> ( <. x , x >. ( comp ` C ) x ) = ( <. X , X >. ( comp ` C ) X ) ) |
| 22 | 21 | opeq2d | |- ( x = X -> <. ( +g ` ndx ) , ( <. x , x >. ( comp ` C ) x ) >. = <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. ) |
| 23 | 19 22 | preq12d | |- ( x = X -> { <. ( Base ` ndx ) , ( x ( Hom ` C ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` C ) x ) >. } = { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } ) |
| 24 | 23 | adantl | |- ( ( ph /\ x = X ) -> { <. ( Base ` ndx ) , ( x ( Hom ` C ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` C ) x ) >. } = { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } ) |
| 25 | prex | |- { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } e. _V |
|
| 26 | 25 | a1i | |- ( ph -> { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } e. _V ) |
| 27 | 16 24 2 26 | fvmptd | |- ( ph -> ( ( End ` C ) ` X ) = { <. ( Base ` ndx ) , ( X ( Hom ` C ) X ) >. , <. ( +g ` ndx ) , ( <. X , X >. ( comp ` C ) X ) >. } ) |