This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The monoid of endomorphisms on an object of a category. (Contributed by BJ, 4-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-bj-end | |- End = ( c e. Cat |-> ( x e. ( Base ` c ) |-> { <. ( Base ` ndx ) , ( x ( Hom ` c ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` c ) x ) >. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cend | |- End |
|
| 1 | vc | |- c |
|
| 2 | ccat | |- Cat |
|
| 3 | vx | |- x |
|
| 4 | cbs | |- Base |
|
| 5 | 1 | cv | |- c |
| 6 | 5 4 | cfv | |- ( Base ` c ) |
| 7 | cnx | |- ndx |
|
| 8 | 7 4 | cfv | |- ( Base ` ndx ) |
| 9 | 3 | cv | |- x |
| 10 | chom | |- Hom |
|
| 11 | 5 10 | cfv | |- ( Hom ` c ) |
| 12 | 9 9 11 | co | |- ( x ( Hom ` c ) x ) |
| 13 | 8 12 | cop | |- <. ( Base ` ndx ) , ( x ( Hom ` c ) x ) >. |
| 14 | cplusg | |- +g |
|
| 15 | 7 14 | cfv | |- ( +g ` ndx ) |
| 16 | 9 9 | cop | |- <. x , x >. |
| 17 | cco | |- comp |
|
| 18 | 5 17 | cfv | |- ( comp ` c ) |
| 19 | 16 9 18 | co | |- ( <. x , x >. ( comp ` c ) x ) |
| 20 | 15 19 | cop | |- <. ( +g ` ndx ) , ( <. x , x >. ( comp ` c ) x ) >. |
| 21 | 13 20 | cpr | |- { <. ( Base ` ndx ) , ( x ( Hom ` c ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` c ) x ) >. } |
| 22 | 3 6 21 | cmpt | |- ( x e. ( Base ` c ) |-> { <. ( Base ` ndx ) , ( x ( Hom ` c ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` c ) x ) >. } ) |
| 23 | 1 2 22 | cmpt | |- ( c e. Cat |-> ( x e. ( Base ` c ) |-> { <. ( Base ` ndx ) , ( x ( Hom ` c ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` c ) x ) >. } ) ) |
| 24 | 0 23 | wceq | |- End = ( c e. Cat |-> ( x e. ( Base ` c ) |-> { <. ( Base ` ndx ) , ( x ( Hom ` c ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` c ) x ) >. } ) ) |