This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the binomial coefficient, N choose K . Definition of binomial coefficient in Gleason p. 295. As suggested by Gleason, we define it to be 0 when 0 <_ K <_ N does not hold. See bcval2 for the value in the standard domain. (Contributed by NM, 10-Jul-2005) (Revised by Mario Carneiro, 7-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bcval | |- ( ( N e. NN0 /\ K e. ZZ ) -> ( N _C K ) = if ( K e. ( 0 ... N ) , ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) , 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( n = N -> ( 0 ... n ) = ( 0 ... N ) ) |
|
| 2 | 1 | eleq2d | |- ( n = N -> ( k e. ( 0 ... n ) <-> k e. ( 0 ... N ) ) ) |
| 3 | fveq2 | |- ( n = N -> ( ! ` n ) = ( ! ` N ) ) |
|
| 4 | fvoveq1 | |- ( n = N -> ( ! ` ( n - k ) ) = ( ! ` ( N - k ) ) ) |
|
| 5 | 4 | oveq1d | |- ( n = N -> ( ( ! ` ( n - k ) ) x. ( ! ` k ) ) = ( ( ! ` ( N - k ) ) x. ( ! ` k ) ) ) |
| 6 | 3 5 | oveq12d | |- ( n = N -> ( ( ! ` n ) / ( ( ! ` ( n - k ) ) x. ( ! ` k ) ) ) = ( ( ! ` N ) / ( ( ! ` ( N - k ) ) x. ( ! ` k ) ) ) ) |
| 7 | 2 6 | ifbieq1d | |- ( n = N -> if ( k e. ( 0 ... n ) , ( ( ! ` n ) / ( ( ! ` ( n - k ) ) x. ( ! ` k ) ) ) , 0 ) = if ( k e. ( 0 ... N ) , ( ( ! ` N ) / ( ( ! ` ( N - k ) ) x. ( ! ` k ) ) ) , 0 ) ) |
| 8 | eleq1 | |- ( k = K -> ( k e. ( 0 ... N ) <-> K e. ( 0 ... N ) ) ) |
|
| 9 | oveq2 | |- ( k = K -> ( N - k ) = ( N - K ) ) |
|
| 10 | 9 | fveq2d | |- ( k = K -> ( ! ` ( N - k ) ) = ( ! ` ( N - K ) ) ) |
| 11 | fveq2 | |- ( k = K -> ( ! ` k ) = ( ! ` K ) ) |
|
| 12 | 10 11 | oveq12d | |- ( k = K -> ( ( ! ` ( N - k ) ) x. ( ! ` k ) ) = ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) |
| 13 | 12 | oveq2d | |- ( k = K -> ( ( ! ` N ) / ( ( ! ` ( N - k ) ) x. ( ! ` k ) ) ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
| 14 | 8 13 | ifbieq1d | |- ( k = K -> if ( k e. ( 0 ... N ) , ( ( ! ` N ) / ( ( ! ` ( N - k ) ) x. ( ! ` k ) ) ) , 0 ) = if ( K e. ( 0 ... N ) , ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) , 0 ) ) |
| 15 | df-bc | |- _C = ( n e. NN0 , k e. ZZ |-> if ( k e. ( 0 ... n ) , ( ( ! ` n ) / ( ( ! ` ( n - k ) ) x. ( ! ` k ) ) ) , 0 ) ) |
|
| 16 | ovex | |- ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) e. _V |
|
| 17 | c0ex | |- 0 e. _V |
|
| 18 | 16 17 | ifex | |- if ( K e. ( 0 ... N ) , ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) , 0 ) e. _V |
| 19 | 7 14 15 18 | ovmpo | |- ( ( N e. NN0 /\ K e. ZZ ) -> ( N _C K ) = if ( K e. ( 0 ... N ) , ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) , 0 ) ) |