This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the binomial coefficient, N choose K . Definition of binomial coefficient in Gleason p. 295. As suggested by Gleason, we define it to be 0 when 0 <_ K <_ N does not hold. See bcval2 for the value in the standard domain. (Contributed by NM, 10-Jul-2005) (Revised by Mario Carneiro, 7-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bcval | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) → ( 𝑁 C 𝐾 ) = if ( 𝐾 ∈ ( 0 ... 𝑁 ) , ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − 𝐾 ) ) · ( ! ‘ 𝐾 ) ) ) , 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑛 = 𝑁 → ( 0 ... 𝑛 ) = ( 0 ... 𝑁 ) ) | |
| 2 | 1 | eleq2d | ⊢ ( 𝑛 = 𝑁 → ( 𝑘 ∈ ( 0 ... 𝑛 ) ↔ 𝑘 ∈ ( 0 ... 𝑁 ) ) ) |
| 3 | fveq2 | ⊢ ( 𝑛 = 𝑁 → ( ! ‘ 𝑛 ) = ( ! ‘ 𝑁 ) ) | |
| 4 | fvoveq1 | ⊢ ( 𝑛 = 𝑁 → ( ! ‘ ( 𝑛 − 𝑘 ) ) = ( ! ‘ ( 𝑁 − 𝑘 ) ) ) | |
| 5 | 4 | oveq1d | ⊢ ( 𝑛 = 𝑁 → ( ( ! ‘ ( 𝑛 − 𝑘 ) ) · ( ! ‘ 𝑘 ) ) = ( ( ! ‘ ( 𝑁 − 𝑘 ) ) · ( ! ‘ 𝑘 ) ) ) |
| 6 | 3 5 | oveq12d | ⊢ ( 𝑛 = 𝑁 → ( ( ! ‘ 𝑛 ) / ( ( ! ‘ ( 𝑛 − 𝑘 ) ) · ( ! ‘ 𝑘 ) ) ) = ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − 𝑘 ) ) · ( ! ‘ 𝑘 ) ) ) ) |
| 7 | 2 6 | ifbieq1d | ⊢ ( 𝑛 = 𝑁 → if ( 𝑘 ∈ ( 0 ... 𝑛 ) , ( ( ! ‘ 𝑛 ) / ( ( ! ‘ ( 𝑛 − 𝑘 ) ) · ( ! ‘ 𝑘 ) ) ) , 0 ) = if ( 𝑘 ∈ ( 0 ... 𝑁 ) , ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − 𝑘 ) ) · ( ! ‘ 𝑘 ) ) ) , 0 ) ) |
| 8 | eleq1 | ⊢ ( 𝑘 = 𝐾 → ( 𝑘 ∈ ( 0 ... 𝑁 ) ↔ 𝐾 ∈ ( 0 ... 𝑁 ) ) ) | |
| 9 | oveq2 | ⊢ ( 𝑘 = 𝐾 → ( 𝑁 − 𝑘 ) = ( 𝑁 − 𝐾 ) ) | |
| 10 | 9 | fveq2d | ⊢ ( 𝑘 = 𝐾 → ( ! ‘ ( 𝑁 − 𝑘 ) ) = ( ! ‘ ( 𝑁 − 𝐾 ) ) ) |
| 11 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( ! ‘ 𝑘 ) = ( ! ‘ 𝐾 ) ) | |
| 12 | 10 11 | oveq12d | ⊢ ( 𝑘 = 𝐾 → ( ( ! ‘ ( 𝑁 − 𝑘 ) ) · ( ! ‘ 𝑘 ) ) = ( ( ! ‘ ( 𝑁 − 𝐾 ) ) · ( ! ‘ 𝐾 ) ) ) |
| 13 | 12 | oveq2d | ⊢ ( 𝑘 = 𝐾 → ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − 𝑘 ) ) · ( ! ‘ 𝑘 ) ) ) = ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − 𝐾 ) ) · ( ! ‘ 𝐾 ) ) ) ) |
| 14 | 8 13 | ifbieq1d | ⊢ ( 𝑘 = 𝐾 → if ( 𝑘 ∈ ( 0 ... 𝑁 ) , ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − 𝑘 ) ) · ( ! ‘ 𝑘 ) ) ) , 0 ) = if ( 𝐾 ∈ ( 0 ... 𝑁 ) , ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − 𝐾 ) ) · ( ! ‘ 𝐾 ) ) ) , 0 ) ) |
| 15 | df-bc | ⊢ C = ( 𝑛 ∈ ℕ0 , 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ ( 0 ... 𝑛 ) , ( ( ! ‘ 𝑛 ) / ( ( ! ‘ ( 𝑛 − 𝑘 ) ) · ( ! ‘ 𝑘 ) ) ) , 0 ) ) | |
| 16 | ovex | ⊢ ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − 𝐾 ) ) · ( ! ‘ 𝐾 ) ) ) ∈ V | |
| 17 | c0ex | ⊢ 0 ∈ V | |
| 18 | 16 17 | ifex | ⊢ if ( 𝐾 ∈ ( 0 ... 𝑁 ) , ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − 𝐾 ) ) · ( ! ‘ 𝐾 ) ) ) , 0 ) ∈ V |
| 19 | 7 14 15 18 | ovmpo | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ) → ( 𝑁 C 𝐾 ) = if ( 𝐾 ∈ ( 0 ... 𝑁 ) , ( ( ! ‘ 𝑁 ) / ( ( ! ‘ ( 𝑁 − 𝐾 ) ) · ( ! ‘ 𝐾 ) ) ) , 0 ) ) |