This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The condition of a structure component extractor restricted to a class being a surjection. This combined with fonex can be used to prove a class being proper. (Contributed by Zhi Wang, 20-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | slotresfo.e | |- E Fn _V |
|
| slotresfo.v | |- ( k e. A -> ( E ` k ) e. V ) |
||
| slotresfo.k | |- ( b e. V -> K e. A ) |
||
| slotresfo.b | |- ( b e. V -> b = ( E ` K ) ) |
||
| Assertion | slotresfo | |- ( E |` A ) : A -onto-> V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | slotresfo.e | |- E Fn _V |
|
| 2 | slotresfo.v | |- ( k e. A -> ( E ` k ) e. V ) |
|
| 3 | slotresfo.k | |- ( b e. V -> K e. A ) |
|
| 4 | slotresfo.b | |- ( b e. V -> b = ( E ` K ) ) |
|
| 5 | ssv | |- A C_ _V |
|
| 6 | fnssres | |- ( ( E Fn _V /\ A C_ _V ) -> ( E |` A ) Fn A ) |
|
| 7 | 1 5 6 | mp2an | |- ( E |` A ) Fn A |
| 8 | fvres | |- ( k e. A -> ( ( E |` A ) ` k ) = ( E ` k ) ) |
|
| 9 | 8 2 | eqeltrd | |- ( k e. A -> ( ( E |` A ) ` k ) e. V ) |
| 10 | 9 | rgen | |- A. k e. A ( ( E |` A ) ` k ) e. V |
| 11 | fnfvrnss | |- ( ( ( E |` A ) Fn A /\ A. k e. A ( ( E |` A ) ` k ) e. V ) -> ran ( E |` A ) C_ V ) |
|
| 12 | 7 10 11 | mp2an | |- ran ( E |` A ) C_ V |
| 13 | df-f | |- ( ( E |` A ) : A --> V <-> ( ( E |` A ) Fn A /\ ran ( E |` A ) C_ V ) ) |
|
| 14 | 7 12 13 | mpbir2an | |- ( E |` A ) : A --> V |
| 15 | fveq2 | |- ( k = K -> ( E ` k ) = ( E ` K ) ) |
|
| 16 | 15 | eqeq2d | |- ( k = K -> ( b = ( E ` k ) <-> b = ( E ` K ) ) ) |
| 17 | 16 3 4 | rspcedvdw | |- ( b e. V -> E. k e. A b = ( E ` k ) ) |
| 18 | 8 | eqeq2d | |- ( k e. A -> ( b = ( ( E |` A ) ` k ) <-> b = ( E ` k ) ) ) |
| 19 | 18 | rexbiia | |- ( E. k e. A b = ( ( E |` A ) ` k ) <-> E. k e. A b = ( E ` k ) ) |
| 20 | 17 19 | sylibr | |- ( b e. V -> E. k e. A b = ( ( E |` A ) ` k ) ) |
| 21 | 20 | rgen | |- A. b e. V E. k e. A b = ( ( E |` A ) ` k ) |
| 22 | dffo3 | |- ( ( E |` A ) : A -onto-> V <-> ( ( E |` A ) : A --> V /\ A. b e. V E. k e. A b = ( ( E |` A ) ` k ) ) ) |
|
| 23 | 14 21 22 | mpbir2an | |- ( E |` A ) : A -onto-> V |