This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A generalization of the axiom of extensionality in which x and y need not be distinct. (Contributed by NM, 15-Sep-1993) (Proof shortened by Andrew Salmon, 12-Aug-2011) Remove dependencies on ax-10 , ax-12 , ax-13 . (Revised by BJ, 12-Jul-2019) (Revised by Wolf Lammen, 9-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axextg | |- ( A. z ( z e. x <-> z e. y ) -> x = y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elequ2 | |- ( w = x -> ( z e. w <-> z e. x ) ) |
|
| 2 | 1 | bibi1d | |- ( w = x -> ( ( z e. w <-> z e. y ) <-> ( z e. x <-> z e. y ) ) ) |
| 3 | 2 | albidv | |- ( w = x -> ( A. z ( z e. w <-> z e. y ) <-> A. z ( z e. x <-> z e. y ) ) ) |
| 4 | equequ1 | |- ( w = x -> ( w = y <-> x = y ) ) |
|
| 5 | 3 4 | imbi12d | |- ( w = x -> ( ( A. z ( z e. w <-> z e. y ) -> w = y ) <-> ( A. z ( z e. x <-> z e. y ) -> x = y ) ) ) |
| 6 | ax-ext | |- ( A. z ( z e. w <-> z e. y ) -> w = y ) |
|
| 7 | 5 6 | chvarvv | |- ( A. z ( z e. x <-> z e. y ) -> x = y ) |