This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subcan2 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - C ) = ( B - C ) <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> A e. CC ) |
|
| 2 | simp3 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> C e. CC ) |
|
| 3 | subcl | |- ( ( B e. CC /\ C e. CC ) -> ( B - C ) e. CC ) |
|
| 4 | 3 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B - C ) e. CC ) |
| 5 | subadd2 | |- ( ( A e. CC /\ C e. CC /\ ( B - C ) e. CC ) -> ( ( A - C ) = ( B - C ) <-> ( ( B - C ) + C ) = A ) ) |
|
| 6 | 1 2 4 5 | syl3anc | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - C ) = ( B - C ) <-> ( ( B - C ) + C ) = A ) ) |
| 7 | npcan | |- ( ( B e. CC /\ C e. CC ) -> ( ( B - C ) + C ) = B ) |
|
| 8 | 7 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( B - C ) + C ) = B ) |
| 9 | 8 | eqeq1d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( B - C ) + C ) = A <-> B = A ) ) |
| 10 | eqcom | |- ( B = A <-> A = B ) |
|
| 11 | 9 10 | bitrdi | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( B - C ) + C ) = A <-> A = B ) ) |
| 12 | 6 11 | bitrd | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - C ) = ( B - C ) <-> A = B ) ) |